Immune checkpoint inhibitors (ICI) represent the cornerstone for the treatment of patients with metastatic clear cell renal cell carcinoma (ccRCC). Despite a favorable response for a subset of patients, others experience primary progressive disease, highlighting the need to precisely understand the plasticity of cancer cells and their cross-talk with the microenvironment to better predict therapeutic response and personalize treatment. Single-cell RNA sequencing of ccRCC at different disease stages and normal adjacent tissue (NAT) from patients identified 46 cell populations, including 5 tumor subpopulations, characterized by distinct transcriptional signatures representing an epithelial-to-mesenchymal transition gradient and a novel inflamed state. Deconvolution of the tumor and microenvironment signatures in public data sets and data from the BIONIKK clinical trial (NCT02960906) revealed a strong correlation between mesenchymal-like ccRCC cells and myofibroblastic cancer-associated fibroblasts (myCAF), which are both enriched in metastases and correlate with poor patient survival. Spatial transcriptomics and multiplex immune staining uncovered the spatial proximity of mesenchymal-like ccRCC cells and myCAFs at the tumor–NAT interface. Moreover, enrichment in myCAFs was associated with primary resistance to ICI therapy in the BIONIKK clinical trial. These data highlight the epithelial–mesenchymal plasticity of ccRCC cancer cells and their relationship with myCAFs, a critical component of the microenvironment associated with poor outcome and ICI resistance.


Single-cell and spatial transcriptomics reveal the proximity of mesenchymal tumor cells to myofibroblastic cancer-associated fibroblasts and their association with disease outcome and immune checkpoint inhibitor response in clear cell renal cell carcinoma.

You do not currently have access to this content.