Antibody–peptide epitope conjugates (APEC) are a new class of modified antibody–drug conjugates that redirect T-cell viral immunity against tumor cells. APECs contain a tumor-specific protease cleavage site linked to a patient-specific viral epitope, resulting in presentation of viral epitopes on cancer cells and subsequent recruitment and killing by CD8+ T cells. Here we developed an experimental pipeline to create patient-specific APECs and identified new preclinical therapies for ovarian carcinoma. Using functional assessment of viral peptide antigen responses to common viruses like cytomegalovirus (CMV) in patients with ovarian cancer, a library of 192 APECs with distinct protease cleavage sequences was created using the anti-epithelial cell adhesion molecule (EpCAM) antibody. Each APEC was tested for in vitro cancer cell killing, and top candidates were screened for killing xenograft tumors grown in zebrafish and mice. These preclinical modeling studies identified EpCAM-MMP7-CMV APEC (EpCAM-MC) as a potential new immunotherapy for ovarian carcinoma. Importantly, EpCAM-MC also demonstrated robust T-cell responses in primary ovarian carcinoma patient ascites samples. This work highlights a robust, customizable platform to rapidly develop patient-specific APECs.

Significance:

This study develops a high-throughput preclinical platform to identify patient-specific antibody–peptide epitope conjugates that target cancer cells and demonstrates the potential of this immunotherapy approach for treating ovarian carcinoma.

You do not currently have access to this content.