Although the incidences are increasing day after day, scientists and researchers taken individually or by research group are trying to fight against cancer by several ways and also by different approaches and techniques. Sesquiterpenes, flavonoids, alkaloids, diterpenoids, and polyphenolic represent a large and diverse group of naturally occurring compounds found in a variety of fruits, vegetables, and medicinal plants with various anticancer properties. In this review, our aim is to give our perspective on the current status of the natural compounds belonging to these groups and discuss their natural sources, their anticancer activity, their molecular targets, and their mechanism of actions with specific emphasis on apoptosis pathways, which may help the further design and conduct of preclinical and clinical trials. Unlike pharmaceutical drugs, the selected natural compounds induce apoptosis by targeting multiple cellular signaling pathways including transcription factors, growth factors, tumor cell survival factors, inflammatory cytokines, protein kinases, and angiogenesis that are frequently deregulated in cancers and suggest that their simultaneous targeting by these compounds could result in efficacious and selective killing of cancer cells. This review suggests that they provide a novel opportunity for treatment of cancer, but clinical trials are still required to further validate them in cancer chemotherapy. Cancer Prev Res; 7(11); 1081–107. ©2014 AACR.

Cancer is a major public health problem and the second leading cause of mortality around the world, mainly Europe and the United States with an incident rate of about 2.6 million cases per year (1, 2). It is characterized by unscheduled and uncontrolled cellular proliferation in the spectrum of cell. Cancer incidence in developing countries has been prevailed by tumor types that are related to viral, genetic mutations, and bacterial contamination (3). Cancer has a high incidence and a long period of latency on its development and in the progression of the sickness. There are numerous risk factors known concerning the development of cancer including age, geographic area, and race (4). However, cancer is mostly a preventable disease.

Regardless of whether a cancer specifically results from a genetic mutation and viral or bacterial contamination, the recent extensive research indicated that most cancers are caused by dysfunction of many genes coding for proteins such as, antiapoptotic proteins, growth factors, growth factor receptors, transcription factors, and tumor suppressors, which constituted the target for cancer treatment. Prevailing treatment options have limited therapeutic success in cancer in the past decade. The concept of chemoprevention is gaining increasing attention because it is a cost-effective alternative for cancer treatment (5). Cancer chemoprevention by natural compounds, especially phytochemicals, minerals, and vitamins, in a number of studies under both in vitro and in vivo conditions has shown promising results against various malignancies (6).

In the development of bioactive chemical, natural products have a rich and long history. Herbal medicines, as an important novel source with a wide range of pharmaceutical potential, are being used to treat human ailments including almost all kinds of cancer (7).

The involvement of multiple factors underlying developmental stages of cancer at epigenetic, genetic, cellular, and molecular levels is opening up enormous opportunities to interrupt and reverse the initiation and progression of the disease and provide scientists and researchers with numerous targets to arrest by physiologic and pharmacologic mechanisms to delay the development of cancer. The aim of this review is to summarize recent researches on twelve (12) natural compounds, such as flavonoids (honokiol, magnolol, jaceosidin, and casticin), sesquiterpenes (parthenolide, costunolide, isoalantolactone, and alantolactone), alkaloid (evodiamine), diterpenoids (oridonin and pseudolaric acid B), and polyphenolic (wedelolactone) focusing on anticancer activity. The literature was screened from various sites including PubMed, Scopus, and Elsevier Science Direct Journal. Access to the Elsevier Science Direct Journal was made possible through library of Northeast Normal University, Changchun, China. We propose that the development of natural compounds into new anticancer agents has a bright future despite some difficulties.

Natural products are important and valuable resources for drug development. Extensive researches have been carried out on the phytochemicals for their health-promoting potential. They have been found in fruits, vegetables, nuts, seeds, herbs, spices, stems, flowers, and tea. The phyto-constituent from these plants was extracted by several techniques, mainly high-performance liquid chromatography, micellar electrokinetic chromatography, microemulsion electrokinetic chromatography, and their structures were elucidated on the basis of nuclear magnetic resonance analysis (Fig. 1).

Figure 1.

Chemical structure of the promising natural compounds and major natural sources.

Figure 1.

Chemical structure of the promising natural compounds and major natural sources.

Close modal

The selected natural compounds among diterpenoids, sesquiterpenes, flavonoids, alkaloids, and polyphenolic have been reported for their wide spectrum of biologic effects, including antifungal, antihelmintic, antimicrobial, anti-inflammatory, antitrypanosomal, and antiproliferative effects on various cancer types as described in Tables 1 and 2.

Table 1.

Natural source, pharmacologic action, and molecular targets of promising natural compounds

CompoundNatural sourceMode of actionType of cancersSynergisticMajor targets
Flavonoids 
 Honokiol Magnolia officinalis, Magnolia grandiflora, Magnolia spp. Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), anti-inflammation, antiangiogenesis, antiautophagy, immunomodulation, anticancer, gastrointestinal disorders, cough, anxiety, and allergies Glioblastoma, melanoma, gastric, leukemia, skin, colon, breast, ovarian, pancreatic, hepatocellular, colorectal, lung, prostate, human renal mesangial, head and neck squamous carcinoma Fluconazole, Epigallocatechi n gallate (EGCG), TNFα CDK1⊥, Bcl-2↓, Bax↑, cyclin D1↓, pAKT↓, γ-secretase activity↓, γ-secretase complex proteins↓, PPAR-γ⊥, COX-2⊥, NF-κB⊥, EGFR/P13K/AKt↓; JunB ↓ and JunD↓ caspase-8↑, caspase-9↑, caspase-3↑, PARP↑, p53↑, CD31 staining↓, LH↑, p38⊥, NF-κB⊥, Bcl-XL↓, Bad↑, cyclin E↓, (Cdk2 and Cdk4)↓, Cdk↑, p21 and p27↑, NF-κB↓, Bcl-2↓, Mcl-1↓, surcivin↓, VEGF↓, STAT3⊥, HG-induced IL1β⊥, IL18⊥, TNFα⊥, -PGE2⊥, NO⊥, and TGFβ1⊥, MCP-1⊥, MIP-1α⊥, EGFR targeting TKI⊥, Akt⊥ erlotinib⊥, EGFR signaling⊥, MAPK⊥, cyclin D1⊥ 
 Magnolol Magnolia officinalis, Magnolia obovata. Antiproliferation (cell-cycle arrest, apoptosis), immunomodulation, anticancer, antianxiety, antidepressant, antioxidant, anti-inflammatory, antiangiogenesis, and hepatoprotective effects Glioblastoma, bladder, breast, colon, gastric, skin, ovarian, lung, prostate, melanoma, liver cancer, cervical epitheloid carcinoma, leukemia, fibrosarcoma, neuroblastoma, thyroid carcinoma TNFα, curcumin p21/Cip1↑, p27/Kip1↑, Hypoxia⊥, HIF1α↑, VEGF↑, AMPK↑, Bcl2↓, Bax↑, p53↑, Bax/Bcl-2↑, caspase-3↑, cyclin B1↓, cyclin A↓, CDK-4↓, Cdc2↓, Cip↑, caspase-8↑, PARP↑, NF-κB↓, HER2↓, PI3K/Akt↓, Bad↑, Bcl-X(S)↑, Bcl-X(L)↓, MMP-2↓, MMP-9↓, caspase-3, -9↑, ERK↑, Raf-1↑, Ca(2+)↑, Cyto-c↑, bcl-2↓, LTC4⊥, LTB4⊥, IgE⊥, cPLA2⊥, 5-LO⊥, MMP-9⊥, Ca(2+)↑, caspase-7↑, ADP- ribose↓, phosphatase↑ 
 Jaceosidin Artemisia princeps, Artemisia iwayomogi, Artemisia argyi, Artemisia copa, Artemisia vestita, Saussurea medusa, Eupatorium arnottianum, Eupatorium lindleyanum, Centaurea phyllocephala, Centaurea nicaeensis, Nipponanthemum nipponicum, Arnica chamissonis, Arnica Montana, Vervain officinalis, Lantana montevidensis, Eriodictyon californicum Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), anti-inflammation Human endometrial, human ovary cancer, glioblastoma, breast, epithelial, prostate, cervical, mammary epithelial TNFα Cdc2↓, cyclin B1↓, complex⊥, caspase-9↑, MMP↓, p53↑, Bax↑, COX-2↑, MMP-9↑, TPA⊥, protein E6 and E7⊥, p53⊥, Bax↑, Bcl-2↓, caspase-3↑, p53↑, p21↑, ERK1/2⊥ 
 Casticin Vitex rotundifolia, V. agnus castus, V. trifolia, V. negundo, Daphne genkwa, Achillea millefolium, Ficus microcarpa, Fructus viticis, Crataegus pinnatifida, Pavetta crassipes, Nelsonia canescens, Citrus unshu, Centipeda minima, Clausena excavate, Croton betulaster, Artemisia abrotanum L., Camellia sinensis Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), premenstrual syndrome, Anti-inflammation, antianxiety, immunomodulation, antimalarial, antimicrobial, and antifungal properties Cervical, pancreatic, colon, breast, lung, gastric, ovarian, liver, colorectal, leukemia, prostate TRAIL, TNFα, cisplatin, curcumin JNK, Bcl-2↓, Bcl-xL↓, XIAP↓, caspase-3↑, caspase-9↑, cyclin B1↓, Bax↑, TNF↓, DR5↑, MMP2↓, MMP9↓, NF-κB↓, STAT3↓, FOXO3a↓, FoxM1↓, CDK1↓, cdc25B↓, cyclin B↓, p27KIP1↑, cyclin A↓, cFLIP↓, survivin↓, cytochrome c↑, Bid↑ 
Sesquiterpenes 
 Costunolide Inula helenium, Saussurea lappa, Magnolia grandiflora Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), anti-inflammation, anticancer, anti-inflammatory, antiviral, antifungal Liver, ovarian, breast, bladder, melanoma, leukemia, prostate, human monocyte, gastric, colorectal TNFα, taxol, cisplatin Bcl-2↓, caspase-3↑, -8↑, and -9↑, Bax↑, Fas↑, Cdc2↓, cyclin B1↓; p21WAF1↑, procaspase-8↑, procaspase-3↑; JNK↑; PI3-K; PKC; ERK↑, NF-κB↓, cyclin E↓; p21↑, VEGF↓ 
 Parthenolide Tanacetum parthenium., Tanacetum vulgare, Centaurea ainetensis, Tanacetum larvatum, Helianthus Annuus, Anvillea radiate, Magnolia kobus, Magnolia virginiana, Magnolia ovate, Magnolia grandiflora, Liriodendron tulipifera, Michelia, Magnolia champaca, Michelia floribunda, Tsoongiodendron odorum, Artemisia ludoviciana, Calea zacatechichi, Polymnia maculate, Achillea falcata Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), anti-inflammation, antiangiogenesis, autophagy, immunomodulation, and cytotoxic effects Breast, skin, melanoma, malignant glioma, epidermal tumorigenesis, liver, gastric, lung, bladder, prostate, bile duct carcinomas, pancreatic, myeloma, leukemia, colorectal, Burkitt lymphoma, epithelial ovarian, osteosarcoma TTRAIL, gemcitabin, taxol, TNFα, cisplatin, curcumin, okadaic acid, geldanamycin, buthionine sulfoximine Bax↑, Bcl2↓, mRNA↓ metalloproteinase-9↓, STAT3⊥, JNK↑, VEGF⊥, IL8⊥, ABCB5 transporter↓, Bcl-X(L)↓, survivin↓, cyclin D1↓, IL8↓ matrix metalloproteinase 9↓, Akt phosphorylation↓, NF-κB↓, p65/NF-κB↓, Ki67↓, p21↑, antioxidant N-acetyl-L-cystein⊥, glutathione S-transferase↓ STAT3⊥, JAK⊥, tBid↑ of caspase-3/8/9↑, poly (ADP-ribose) polymerase⊥, p-ERK↑, p-p38↑, p38 and SAPK/JNK↑, PKC-alpha⊥, procaspase-3↓, p65↓, VEGF⊥, IL6 mRNA⊥, IkappaB-alpha↑, p53↑, ROS↑, JNK↑, Bid↑ 
 Alantolactone Inula helenium, L., Inula japonica Aucklandia lappa, Radix inulae Inula racemosa Anti-inflammatory, antimicrobial, anticancer, cytotoxicity, antifungal, oxidoreductase, and antiproliferative Prostate, glioblastoma, colon, leukemia, liver, lung — Bax/Bcl-2↑, caspase-3↑, STAT3⊥, caspase-8, MMP↓, Bid↑, NF-κB/p65↓, p53↑, Bax↑, Bcl-2↓, caspase-9↑, caspase-3↑, ADP-ribose↓, NF-κB⊥, ROS↑, activin/SMAD3 signaling↑, Cripto-1/ActRII⊥, ROS↑, cytochrome-c↑, Bax↑, PARP↓, ADP-ribose↓, NF-κB⊥, DNA-binding↓, IκBα phosphorylation↓, p21↑, Bcr/Abl↓, P-glycoprotein↓, cyclin B1↓, cyclin-dependent protein kinase-1↓ 
 Isoalantolactone Inula helenium, L., Inula japonica Aucklandia lappa, Radix inulae Inula racemosa Anti-inflammatory, antimicrobial, anticancer, cytotoxicity, antifungal, oxidoreductase, and antiproliferative Prostate gastric pancreatic leukemia — p38↑, MAPK↑, Bax↑, and cleaved caspase-3↑, Bcl-2↓, PI3K/Akt⊥, PARP↑ 
Diterpenoids 
 Oridonin Isodon rubescens Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), anti-inflammation, autophagy, and immunomodulation Breast, astrocytoma, leukemia, lung, hepatoma, prostate, colorectal, pancreatic, ovarian, human multiple myeloma, human histocytic lymphoma, hepatocellular, cervical, neuroblastoma, laryngeal, gastric, murine fibrosarcoma, melanoma, epidermoid carcinoma, osteosarcoma TRAIL, gemcitabin, taxol, TNFα, cisplatin, curcumin, arsenic trioxide (As2O3), Wogonin Caspase-8↓, NF-κB (p65)↓, IKKα↓, IKKβ↓, phospho-mTOR↓, Fas↑, PPARγ↑, MMP-2/MMP-9↓, β1/FAK⊥, caspase-3↑, LYN⊥, ABL⊥, Akt/mTOR↓, Raf/MEK/ERK↓ and STAT5↓, AML1-ETO↓, c-Kit(+)⊥, c-Met-NF-κB-COX-2↑, c-Met-Bcl-2-caspase-3, Bcl-2/Bax ratio↑, AVOs↓, LC3-I⊥, LC3-II⊥, P21↑, FAS⊥, SREBP1⊥, AP-1↓, NF-κB↓, P38↓, p21↑, p27↑, p16↑, c-myc p38↑, p53↑, (MAPK)-p38, cyclin B1 and p-cdc2 (T161)↓, p53↑, Akt↓, ROS↓, SIRT1↓, NF-κB↑, caspase-1↑, IL1β↑, XIAP↓, Grp78↑, α-CP1↓, Bcl-2↓, caspase-8↑, procaspase-3-9↓, pro-TNFα↑, p53↓, caspase-9↓, DeltaPsim↓, ERK↓, p38↑, MAPK↑, JNK↑ 
 Pseudolaric Acid B Pseudolarix kaempferi Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), immunomodulation, anticancer and anti-inflammatory, and antiangiogenesis effects Microvessel endothelial, prostate, glioblastoma, umbilical vein endothelial, murine fibrosarcoma, bladder, colon, lung, breast, melanoma, ovarian, leukemia, gastric, liver Taxol, TNFα NF-kB⊥, p65⊥, IL2↓, IkB-α⊥, cyclin B1↑, CDK1↑, cyclin D1↓ p53↑, Bax↑, Bcl-2↓, 1α and cyclin E↓, cdc2↑, cdc2↓, survivin↓, caspase-3↑, COX-2⊥, STAT3, I-κB↓, Tubulin, binding of colchicine to tubulin⊥, bcl-x(L) ⊥, NAG-1↑, JNK↑, ERK↓, Wee1 kinase and p21↑, Bcl-xL↓, Bax↑, caspase-7↑, Fas/APO-1↑, Bcl-2 binding with Beclin 1⊥, Akt phosphorylation↓ 
Polyphenolic 
 Wedelolactone Eclipta alba, Wedelia calandulaceae, Wedelia chinensis, Eclipta prostrata Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), anti-inflammation, and hepatoprotective effects Breast, prostate, neuroblastoma, pancreatic, mammary carcinosarcoma, myeloma, leukemia, adenoma, glioma IFNγ NF-κB↓, PARP↑, IIα↓, p-p53↑, caspase-3↑, caspase-7↑, c-JNK↑, PKCϵ↓, IKKα↓, Bax↑, Bcl- xL↓, p21↑, p27↑, Bcl-2↓, IL6↓, IL6R↓, c-myc, IKK↓, p-TAK1, IKKβ↓, IKKα↓, IL1β↓, STAT-3↓, TLR-4↑, TLR-7↑, TLR-8↑, Akt↓, TNFα↓, IκB↓ 
Alkaloids 
 Evodiamine Evodia rutaecarpa Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), anti-inflammation, antimicrobial, anticancer, antimetastatic, and anticarcinogenesis Murine Lewis lung, hepatocellular, leukemia, gastric, pancreatic, colon, human thyroid cancer, melanoma, colorectal, breast, cervix carcinoma, prostate Gemcitabin, taxol, TNFα, cisplatin Atgs↑, 3-MA⊥, IL6↓, STAT3⊥, AP-1⊥, PLC- γ1⊥, XIAP⊥, Bax↑, CDK1⊥, ND cyclinB1↑, PI3K⊥, Akt⊥, PKA⊥, mTOR⊥, PTEN⊥, NF-κB↓, cyclinA↓, cyclinA-dependent kinase 2↓, cdc25c↓, TUNEL↑, procaspase-3-8-9↓, cdc25C↑, cyclin B1↑, cdc2-p161 protein↑, cdc2-p15, caspase-3-8-9↑, Fas-L↑, p53↑, p21↑, Bcl-2↓, TopI⊥, Raf-1↓, Bax↑, Bcl-2↑, Bcl-x(L)↓, Beclin 1↑, LC3↑, Cdc2↑, cyclin B1↑, Cdc2 (Thr 161) ↑, Cdc2 (Tyr 15) ↓, Myt-1↓, Cdc25C↓, caspase-3-9↑, ERK phosphorylation↓, VEGF⊥ 
Flavonoids 
 Honokiol Magnolia officinalis, Magnolia grandiflora, Magnolia spp. Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), anti-inflammation, antiangiogenesis, antiautophagy, immunomodulation, anticancer, gastrointestinal disorders, cough, anxiety, and allergies Glioblastoma, melanoma, gastric, leukemia, skin, colon, breast, ovarian, pancreatic, hepatocellular, colorectal, lung, prostate, human renal mesangial, head and neck squamous carcinoma Fluconazole, Epigallocatechi n gallate (EGCG), TNFα CDK1⊥, Bcl-2↓, Bax↑, cyclin D1↓, pAKT↓, γ-secretase activity↓, γ-secretase complex proteins↓, PPARγ⊥, COX-2⊥, NF-κB⊥, EGFR/P13K/AKt↓; JunB↓and JunD↓ caspase-8↑, caspase-9↑, caspase-3↑, PARP↑, p53↑, CD31 staining↓, LH↑, p38⊥, NF-κB⊥, Bcl-XL↓, Bad↑, cyclin E↓, (Cdk2 and Cdk4)↓, Cdk↑, p21 and p27↑, NF-κB↓, Bcl-2↓, Mcl-1↓, surcivin↓, VEGF↓, STAT3⊥, HG-induced IL1β⊥, IL18⊥, TNFα⊥, -PGE2⊥, NO⊥, and TGFβ1⊥, MCP-1 ⊥, MIP-1α⊥, EGFR targeting TKI⊥, Akt⊥ erlotinib⊥, EGFR signaling⊥, MAPK⊥, cyclin D1⊥ 
 Magnolol Magnolia officinalis, Magnolia obovata. Antiproliferation (cell-cycle arrest, apoptosis), immunomodulation, anticancer, antianxiety, antidepressant, antioxidant, anti-inflammatory, antiangiogenesis, and hepatoprotective effects Glioblastoma, bladder, breast, colon, gastric, skin, ovarian, lung, prostate, melanoma, liver cancer, cervical epitheloid carcinoma, leukemia, fibrosarcoma, neuroblastoma, thyroid carcinoma TNFα, curcumin p21/Cip1↑, p27/Kip1↑, Hypoxia⊥, HIF1α↑, VEGF↑, AMPK↑, Bcl2↓, Bax↑, p53↑, Bax/Bcl-2↑, caspase-3↑, Cyclin B1↓, Cyclin A↓, CDK-4↓, Cdc2↓, Cip↑, caspase-8↑, PARP↑, NF-κB↓, HER2↓, -PI3K/Akt↓, Bad↑, Bcl-X(S)↑, Bcl-X(L)↓, MMP-2↓, MMP-9↓, caspase-3, 9↑, ERK↑, Raf-1↑, Ca(2+) ↑, Cyto-c↑, bcl-2↓, LTC4⊥, LTB4⊥, IgE⊥, cPLA2⊥, 5-LO⊥, MMP-9⊥, Ca(2+)↑, caspase-7↑, ADP-ribose↓, phosphatase↑ 
 Jaceosidin Artemisia princeps, Artemisia iwayomogi, Artemisia argyi, Artemisia copa, Artemisia vestita, Saussurea medusa, Eupatorium arnottianum, Eupatorium lindleyanum, Centaurea phyllocephala, Centaurea nicaeensis, Nipponanthemum nipponicum, Arnica chamissonis, Arnica Montana, Vervain officinalis, Lantana montevidensis, Eriodictyon californicum Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), anti-inflammation Human endometrial, human ovary cancer, glioblastoma, breast, epithelial, prostate, cervical, mammary epithelial TNFα Cdc2↓, cyclin B1↓, complex⊥, caspase-9↑, MMP.↓, p53↑, Bax↑, COX-2↑, MMP-9↑, TPA⊥, protein E6 and E7⊥, p53⊥, Bax↑, Bcl-2↓, caspase-3↑, p53↑, p21↑, ERK1/2⊥ 
 Casticin Vitex rotundifolia, V. agnus castus, V. trifolia, V. negundo, Daphne genkwa, Achillea millefolium, Ficus microcarpa, Fructus viticis, Crataegus pinnatifida, Pavetta crassipes, Nelsonia canescens, Citrus unshu, Centipeda minima, Clausena excavate, Croton betulaster, Artemisia abrotanum L., Camellia sinensis Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), premenstrual syndrome, anti-inflammation, antianxiety, immunomodulation, antimalarial, antimicrobial, and antifungal properties Cervical, pancreatic, colon, breast, lung, gastric, ovarian, liver, colorectal, leukemia, prostate TRAIL, TNFα, cisplatin, curcumin Bcl-2↓, Bcl-xL↓, XIAP↓, caspase-3↑, caspase-9↑, Cyclin B1↓, Bax↑, TNF↓, DR5↑, MMP2↓, MMP9↓, NF-κB↓, STAT3↓, FOXO3a↓, FoxM1↓, CDK1↓, cdc25B↓, cyclin B↓, p27KIP1↑, Cyclin A↓, cFLIP↓, survivin↓, cytochrome c↑, Bid↑ 
Sesquiterpenes 
 Costunolide Inula helenium, Saussurea lappa, Magnolia grandiflora Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), anti-inflammation, anticancer, anti-inflammatory, antiviral, antifungal Liver, ovarian, breast, bladder, melanoma, leukemia, prostate, human monocyte, gastric, colorectal TNFα, taxol, cisplatin Bcl-2 ↓, caspase-3↑, -8↑, and -9↑, Bax↑, Fas↑, Cdc2↓, cyclin B1↓; p21WAF1↑, pro-caspase-8↑, pro-caspase-3↑; JNK↑; PI3-K; PKC; ERK↑, NF-κB↓, cyclin E↓; p21↑, VEGF↓ 
 Parthenolide Tanacetum parthenium., Tanacetum vulgare, Centaurea ainetensis, Tanacetum larvatum, Helianthus Annuus, Anvillea radiate, Magnolia kobus, Magnolia virginiana, Magnolia ovate, Magnolia grandiflora, Liriodendron tulipifera, Michelia, Magnolia champaca, Michelia floribunda, Tsoongiodendron odorum, Artemisia ludoviciana, Calea zacatechichi, Polymnia maculate, Achillea falcata Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), anti-inflammation, antiangiogenesis, autophagy, immunomodulation, and cytotoxic effects Breast, skin, melanoma, malignant glioma, epidermal tumorigenesis, liver, gastric, lung, bladder, prostate, bile duct carcinomas, pancreatic, myeloma, leukemia, colorectal, Burkitt lymphoma, epithelial ovarian, osteosarcoma TTRAIL, gemcitabin, taxol, TNFα, cisplatin, curcumin, okadaic acid, geldanamycin, buthionine sulfoximine Bax↑, Bcl2↓, mRNA↓ metalloproteinase-9↓, STAT-3⊥, JNK↑, VEGF⊥, IL8⊥, ABCB5 transporter↓, Bcl-X(L) ↓, survivin↓, cyclin D1↓, IL8↓ matrix metalloproteinase 9↓, Akt phosphorylation↓, NF-κB↓, p65/NF-κB↓, Ki67↓, p21↑, antioxidant N-acetyl-L-cystein⊥, glutathione S-transferase↓ STAT3⊥, JAK⊥, tBid↑ of caspase-3/8/9↑, poly(ADP-ribose) polymerase⊥, p-ERK↑, p-p38↑, p38 and SAPK/JNK↑, PKC-alpha⊥, pro-caspase-3↓, p65↓, VEGF⊥, IL6 mRNA⊥, IkappaB-alpha↑, p53↑, ROS↑, JNK↑, Bid↑ 
 Alantolactone Inula helenium, L., Inula japonica Aucklandia lappa, Radix inulae Inula racemosa Anti-inflammatory, antimicrobial, anticancer, cytotoxicity, antifungal, oxidoreductase, and antiproliferative Prostate, glioblastoma, colon, leukemia, liver, lung — Bax/Bcl-2↑, caspase-3↑, STAT3⊥, caspase-8, MMP↓, Bid↑, NF-B/p65↓, p53↑, Bax↑, Bcl-2↓, caspase-9↑, caspase-3↑, ADP-ribose↓, NF-κB⊥, ROS↑, activin/SMAD3 signaling↑, Cripto-1/ActRII⊥, ROS↑, cytochrome-c↑, Bax↑, PARP↓, ADP-ribose↓, NF-B⊥, DNA-binding↓, IκBα phosphorylation↓, p21↑, Bcr/Abl↓, P-glycoprotein↓, cyclin B1↓, cyclin-dependent protein kinase-1↓ 
 Isoalantolactone Inula helenium, L., Inula japonica Aucklandia lappa, Radix inulae Inula racemosa Anti-inflammatory, antimicrobial, anticancer, cytotoxicity, antifungal, oxidoreductase, and antiproliferative Prostate gastric pancreatic leukemia — p38↑, MAPK↑, Bax↑, and cleaved caspase-3↑, Bcl-2↓, PI3K/Akt⊥, PARP↑ 
Diterpenoids 
 Oridonin Isodon rubescens Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), anti-inflammation, autophagy, and immunomodulation Breast, astrocytoma, leukemia, lung, hepatoma, prostate, colorectal, pancreatic, ovarian, human multiple myeloma, human histocytic lymphoma, hepatocellular, cervical, neuroblastoma, laryngeal, gastric, murine fibrosarcoma, melanoma, epidermoid carcinoma, osteosarcoma TRAIL, gemcitabin, taxol, TNFα, cisplatin, curcumin, arsenic trioxide (As2O3), Wogonin Caspase-8↓, NF-κB (p65)↓, IKKα↓, IKKβ↓, phospho-mTOR↓, Fas↑, PPARγ↑, MMP-2/MMP- 9↓, β1/FAK⊥, caspase-3↑, LYN⊥, ABL⊥, Akt/mTOR↓, Raf/MEK/ERK↓ and STAT5↓, AML1-ETO↓, c-Kit(+)⊥, c-Met-NF-κB-COX-2↑, c-Met-Bcl-2-caspase-3, Bcl-2/Bax ratio↑, AVOs↓, LC3-I⊥, LC3-II⊥, P21↑, FAS⊥, SREBP1⊥, AP- 1↓, NF-κB↓, P38↓, p21↑, p27↑, p16↑, c-myc p38↑, p53↑, (MAPK)-p38, cyclin B1 and p-cdc2 (T161)↓, p53↑, Akt↓, ROS↓, SIRT1↓, NF-κB↑, caspase-1↑, IL-1β↑, XIAP↓, Grp78↑, α-CP1↓, Bcl-2↓, caspase- 8↑, procaspase-3-9↓, pro-TNFα↑, p53↓, caspase-9↓, DeltaPsim↓, ERK↓, p38↑, MAPK↑, JNK↑ 
 Pseudolaric Acid B Pseudolarix kaempferi Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), immunomodulation, anticancer, and anti-inflammatory and antiangiogenesis effects Microvessel endothelial, prostate, glioblastoma, umbilical vein endothelial, murine fibrosarcoma, bladder, colon, lung, breast, melanoma, ovarian, leukemia, gastric, liver Taxol, TNFα NF-kB⊥, p65⊥, IL2↓, IkB-α ⊥, cyclin B1↑, CDK1↑, cyclin D1↓ p53↑, Bax↑, Bcl-2↓, 1α and cyclin E↓, cdc2↑, cdc2↓, survivin↓, caspase-3↑, COX-2⊥, STAT3, I-κB↓, Tubulin, binding of colchicine to tubulin⊥, bcl-x(L) ⊥, NAG-1↑, JNK↑, ERK↓, Wee1 kinase and p21↑, Bcl-xL↓, Bax↑, caspase-7↑, Fas/APO-1↑, Bcl-2 binding with Beclin 1⊥, Akt phosphorylation↓ 
Polyphenolic 
 Wedelolactone Eclipta alba, Wedelia calandulaceae, Wedelia chinensis, Eclipta prostrata Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), anti-inflammation, and hepatoprotective effects Breast, prostate, neuroblastoma, pancreatic, mammary carcinosarcoma, myeloma, leukemia, adenoma, glioma IFNγ NF-κB↓, PARP↑, IIα↓, p-p53↑, caspase-3↑, caspase-7↑, c-JNK↑, PKCϵ↓, IKKα↓, Bax↑, Bcl- xL↓, p21↑, p27↑, Bcl-2↓, IL6↓, IL6R↓, c-myc, IKK↓, p-TAK1, IKKβ↓, IKKα↓, IL1β↓, STAT-3↓, TLR-4↑, TLR-7↑, TLR-8↑, Akt↓, TNFα↓, IκB↓ 
Alkaloids 
 Evodiamine Evodia rutaecarpa Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), anti-inflammation, antimicrobial, anticancer, antimetastatic, and anticarcinogenesis Murine Lewis lung, hepatocellular, leukemia, gastric, pancreatic, colon, human thyroid cancer, melanoma, colorectal, breast, cervix carcinoma, prostate Gemcitabin, taxol, TNF-α, cisplatin Atgs↑, 3-MA⊥, IL6↓, STAT3⊥, AP-1⊥, PLC-γ1⊥, XIAP⊥, Bax↑, CDK1⊥, ND cyclinB1↑, PI3K⊥, Akt⊥, PKA⊥, mTOR⊥, PTEN⊥, NF-κB↓, cyclinA↓, cyclinA-dependent kinase 2↓, cdc25c↓, TUNEL↑, procaspase-3-8-9↓, cdc25C↑, cyclin B1↑, cdc2-p161 protein↑, cdc2-p15, caspase-3-8-9↑, Fas- L↑, p53↑, p21↑, Bcl-2↓, TopI⊥, Raf-1↓, Bax↑, Bcl-2↑, Bcl-x(L) ↓, Beclin 1↑, LC3↑, Cdc2↑, cyclin B1↑, Cdc2 (Thr 161) ↑, Cdc2 (Tyr 15) ↓, Myt-1↓, Cdc25C↓, caspase-3-9↑, ERK phosphorylation↓, VEGF⊥ 
CompoundNatural sourceMode of actionType of cancersSynergisticMajor targets
Flavonoids 
 Honokiol Magnolia officinalis, Magnolia grandiflora, Magnolia spp. Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), anti-inflammation, antiangiogenesis, antiautophagy, immunomodulation, anticancer, gastrointestinal disorders, cough, anxiety, and allergies Glioblastoma, melanoma, gastric, leukemia, skin, colon, breast, ovarian, pancreatic, hepatocellular, colorectal, lung, prostate, human renal mesangial, head and neck squamous carcinoma Fluconazole, Epigallocatechi n gallate (EGCG), TNFα CDK1⊥, Bcl-2↓, Bax↑, cyclin D1↓, pAKT↓, γ-secretase activity↓, γ-secretase complex proteins↓, PPAR-γ⊥, COX-2⊥, NF-κB⊥, EGFR/P13K/AKt↓; JunB ↓ and JunD↓ caspase-8↑, caspase-9↑, caspase-3↑, PARP↑, p53↑, CD31 staining↓, LH↑, p38⊥, NF-κB⊥, Bcl-XL↓, Bad↑, cyclin E↓, (Cdk2 and Cdk4)↓, Cdk↑, p21 and p27↑, NF-κB↓, Bcl-2↓, Mcl-1↓, surcivin↓, VEGF↓, STAT3⊥, HG-induced IL1β⊥, IL18⊥, TNFα⊥, -PGE2⊥, NO⊥, and TGFβ1⊥, MCP-1⊥, MIP-1α⊥, EGFR targeting TKI⊥, Akt⊥ erlotinib⊥, EGFR signaling⊥, MAPK⊥, cyclin D1⊥ 
 Magnolol Magnolia officinalis, Magnolia obovata. Antiproliferation (cell-cycle arrest, apoptosis), immunomodulation, anticancer, antianxiety, antidepressant, antioxidant, anti-inflammatory, antiangiogenesis, and hepatoprotective effects Glioblastoma, bladder, breast, colon, gastric, skin, ovarian, lung, prostate, melanoma, liver cancer, cervical epitheloid carcinoma, leukemia, fibrosarcoma, neuroblastoma, thyroid carcinoma TNFα, curcumin p21/Cip1↑, p27/Kip1↑, Hypoxia⊥, HIF1α↑, VEGF↑, AMPK↑, Bcl2↓, Bax↑, p53↑, Bax/Bcl-2↑, caspase-3↑, cyclin B1↓, cyclin A↓, CDK-4↓, Cdc2↓, Cip↑, caspase-8↑, PARP↑, NF-κB↓, HER2↓, PI3K/Akt↓, Bad↑, Bcl-X(S)↑, Bcl-X(L)↓, MMP-2↓, MMP-9↓, caspase-3, -9↑, ERK↑, Raf-1↑, Ca(2+)↑, Cyto-c↑, bcl-2↓, LTC4⊥, LTB4⊥, IgE⊥, cPLA2⊥, 5-LO⊥, MMP-9⊥, Ca(2+)↑, caspase-7↑, ADP- ribose↓, phosphatase↑ 
 Jaceosidin Artemisia princeps, Artemisia iwayomogi, Artemisia argyi, Artemisia copa, Artemisia vestita, Saussurea medusa, Eupatorium arnottianum, Eupatorium lindleyanum, Centaurea phyllocephala, Centaurea nicaeensis, Nipponanthemum nipponicum, Arnica chamissonis, Arnica Montana, Vervain officinalis, Lantana montevidensis, Eriodictyon californicum Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), anti-inflammation Human endometrial, human ovary cancer, glioblastoma, breast, epithelial, prostate, cervical, mammary epithelial TNFα Cdc2↓, cyclin B1↓, complex⊥, caspase-9↑, MMP↓, p53↑, Bax↑, COX-2↑, MMP-9↑, TPA⊥, protein E6 and E7⊥, p53⊥, Bax↑, Bcl-2↓, caspase-3↑, p53↑, p21↑, ERK1/2⊥ 
 Casticin Vitex rotundifolia, V. agnus castus, V. trifolia, V. negundo, Daphne genkwa, Achillea millefolium, Ficus microcarpa, Fructus viticis, Crataegus pinnatifida, Pavetta crassipes, Nelsonia canescens, Citrus unshu, Centipeda minima, Clausena excavate, Croton betulaster, Artemisia abrotanum L., Camellia sinensis Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), premenstrual syndrome, Anti-inflammation, antianxiety, immunomodulation, antimalarial, antimicrobial, and antifungal properties Cervical, pancreatic, colon, breast, lung, gastric, ovarian, liver, colorectal, leukemia, prostate TRAIL, TNFα, cisplatin, curcumin JNK, Bcl-2↓, Bcl-xL↓, XIAP↓, caspase-3↑, caspase-9↑, cyclin B1↓, Bax↑, TNF↓, DR5↑, MMP2↓, MMP9↓, NF-κB↓, STAT3↓, FOXO3a↓, FoxM1↓, CDK1↓, cdc25B↓, cyclin B↓, p27KIP1↑, cyclin A↓, cFLIP↓, survivin↓, cytochrome c↑, Bid↑ 
Sesquiterpenes 
 Costunolide Inula helenium, Saussurea lappa, Magnolia grandiflora Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), anti-inflammation, anticancer, anti-inflammatory, antiviral, antifungal Liver, ovarian, breast, bladder, melanoma, leukemia, prostate, human monocyte, gastric, colorectal TNFα, taxol, cisplatin Bcl-2↓, caspase-3↑, -8↑, and -9↑, Bax↑, Fas↑, Cdc2↓, cyclin B1↓; p21WAF1↑, procaspase-8↑, procaspase-3↑; JNK↑; PI3-K; PKC; ERK↑, NF-κB↓, cyclin E↓; p21↑, VEGF↓ 
 Parthenolide Tanacetum parthenium., Tanacetum vulgare, Centaurea ainetensis, Tanacetum larvatum, Helianthus Annuus, Anvillea radiate, Magnolia kobus, Magnolia virginiana, Magnolia ovate, Magnolia grandiflora, Liriodendron tulipifera, Michelia, Magnolia champaca, Michelia floribunda, Tsoongiodendron odorum, Artemisia ludoviciana, Calea zacatechichi, Polymnia maculate, Achillea falcata Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), anti-inflammation, antiangiogenesis, autophagy, immunomodulation, and cytotoxic effects Breast, skin, melanoma, malignant glioma, epidermal tumorigenesis, liver, gastric, lung, bladder, prostate, bile duct carcinomas, pancreatic, myeloma, leukemia, colorectal, Burkitt lymphoma, epithelial ovarian, osteosarcoma TTRAIL, gemcitabin, taxol, TNFα, cisplatin, curcumin, okadaic acid, geldanamycin, buthionine sulfoximine Bax↑, Bcl2↓, mRNA↓ metalloproteinase-9↓, STAT3⊥, JNK↑, VEGF⊥, IL8⊥, ABCB5 transporter↓, Bcl-X(L)↓, survivin↓, cyclin D1↓, IL8↓ matrix metalloproteinase 9↓, Akt phosphorylation↓, NF-κB↓, p65/NF-κB↓, Ki67↓, p21↑, antioxidant N-acetyl-L-cystein⊥, glutathione S-transferase↓ STAT3⊥, JAK⊥, tBid↑ of caspase-3/8/9↑, poly (ADP-ribose) polymerase⊥, p-ERK↑, p-p38↑, p38 and SAPK/JNK↑, PKC-alpha⊥, procaspase-3↓, p65↓, VEGF⊥, IL6 mRNA⊥, IkappaB-alpha↑, p53↑, ROS↑, JNK↑, Bid↑ 
 Alantolactone Inula helenium, L., Inula japonica Aucklandia lappa, Radix inulae Inula racemosa Anti-inflammatory, antimicrobial, anticancer, cytotoxicity, antifungal, oxidoreductase, and antiproliferative Prostate, glioblastoma, colon, leukemia, liver, lung — Bax/Bcl-2↑, caspase-3↑, STAT3⊥, caspase-8, MMP↓, Bid↑, NF-κB/p65↓, p53↑, Bax↑, Bcl-2↓, caspase-9↑, caspase-3↑, ADP-ribose↓, NF-κB⊥, ROS↑, activin/SMAD3 signaling↑, Cripto-1/ActRII⊥, ROS↑, cytochrome-c↑, Bax↑, PARP↓, ADP-ribose↓, NF-κB⊥, DNA-binding↓, IκBα phosphorylation↓, p21↑, Bcr/Abl↓, P-glycoprotein↓, cyclin B1↓, cyclin-dependent protein kinase-1↓ 
 Isoalantolactone Inula helenium, L., Inula japonica Aucklandia lappa, Radix inulae Inula racemosa Anti-inflammatory, antimicrobial, anticancer, cytotoxicity, antifungal, oxidoreductase, and antiproliferative Prostate gastric pancreatic leukemia — p38↑, MAPK↑, Bax↑, and cleaved caspase-3↑, Bcl-2↓, PI3K/Akt⊥, PARP↑ 
Diterpenoids 
 Oridonin Isodon rubescens Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), anti-inflammation, autophagy, and immunomodulation Breast, astrocytoma, leukemia, lung, hepatoma, prostate, colorectal, pancreatic, ovarian, human multiple myeloma, human histocytic lymphoma, hepatocellular, cervical, neuroblastoma, laryngeal, gastric, murine fibrosarcoma, melanoma, epidermoid carcinoma, osteosarcoma TRAIL, gemcitabin, taxol, TNFα, cisplatin, curcumin, arsenic trioxide (As2O3), Wogonin Caspase-8↓, NF-κB (p65)↓, IKKα↓, IKKβ↓, phospho-mTOR↓, Fas↑, PPARγ↑, MMP-2/MMP-9↓, β1/FAK⊥, caspase-3↑, LYN⊥, ABL⊥, Akt/mTOR↓, Raf/MEK/ERK↓ and STAT5↓, AML1-ETO↓, c-Kit(+)⊥, c-Met-NF-κB-COX-2↑, c-Met-Bcl-2-caspase-3, Bcl-2/Bax ratio↑, AVOs↓, LC3-I⊥, LC3-II⊥, P21↑, FAS⊥, SREBP1⊥, AP-1↓, NF-κB↓, P38↓, p21↑, p27↑, p16↑, c-myc p38↑, p53↑, (MAPK)-p38, cyclin B1 and p-cdc2 (T161)↓, p53↑, Akt↓, ROS↓, SIRT1↓, NF-κB↑, caspase-1↑, IL1β↑, XIAP↓, Grp78↑, α-CP1↓, Bcl-2↓, caspase-8↑, procaspase-3-9↓, pro-TNFα↑, p53↓, caspase-9↓, DeltaPsim↓, ERK↓, p38↑, MAPK↑, JNK↑ 
 Pseudolaric Acid B Pseudolarix kaempferi Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), immunomodulation, anticancer and anti-inflammatory, and antiangiogenesis effects Microvessel endothelial, prostate, glioblastoma, umbilical vein endothelial, murine fibrosarcoma, bladder, colon, lung, breast, melanoma, ovarian, leukemia, gastric, liver Taxol, TNFα NF-kB⊥, p65⊥, IL2↓, IkB-α⊥, cyclin B1↑, CDK1↑, cyclin D1↓ p53↑, Bax↑, Bcl-2↓, 1α and cyclin E↓, cdc2↑, cdc2↓, survivin↓, caspase-3↑, COX-2⊥, STAT3, I-κB↓, Tubulin, binding of colchicine to tubulin⊥, bcl-x(L) ⊥, NAG-1↑, JNK↑, ERK↓, Wee1 kinase and p21↑, Bcl-xL↓, Bax↑, caspase-7↑, Fas/APO-1↑, Bcl-2 binding with Beclin 1⊥, Akt phosphorylation↓ 
Polyphenolic 
 Wedelolactone Eclipta alba, Wedelia calandulaceae, Wedelia chinensis, Eclipta prostrata Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), anti-inflammation, and hepatoprotective effects Breast, prostate, neuroblastoma, pancreatic, mammary carcinosarcoma, myeloma, leukemia, adenoma, glioma IFNγ NF-κB↓, PARP↑, IIα↓, p-p53↑, caspase-3↑, caspase-7↑, c-JNK↑, PKCϵ↓, IKKα↓, Bax↑, Bcl- xL↓, p21↑, p27↑, Bcl-2↓, IL6↓, IL6R↓, c-myc, IKK↓, p-TAK1, IKKβ↓, IKKα↓, IL1β↓, STAT-3↓, TLR-4↑, TLR-7↑, TLR-8↑, Akt↓, TNFα↓, IκB↓ 
Alkaloids 
 Evodiamine Evodia rutaecarpa Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), anti-inflammation, antimicrobial, anticancer, antimetastatic, and anticarcinogenesis Murine Lewis lung, hepatocellular, leukemia, gastric, pancreatic, colon, human thyroid cancer, melanoma, colorectal, breast, cervix carcinoma, prostate Gemcitabin, taxol, TNFα, cisplatin Atgs↑, 3-MA⊥, IL6↓, STAT3⊥, AP-1⊥, PLC- γ1⊥, XIAP⊥, Bax↑, CDK1⊥, ND cyclinB1↑, PI3K⊥, Akt⊥, PKA⊥, mTOR⊥, PTEN⊥, NF-κB↓, cyclinA↓, cyclinA-dependent kinase 2↓, cdc25c↓, TUNEL↑, procaspase-3-8-9↓, cdc25C↑, cyclin B1↑, cdc2-p161 protein↑, cdc2-p15, caspase-3-8-9↑, Fas-L↑, p53↑, p21↑, Bcl-2↓, TopI⊥, Raf-1↓, Bax↑, Bcl-2↑, Bcl-x(L)↓, Beclin 1↑, LC3↑, Cdc2↑, cyclin B1↑, Cdc2 (Thr 161) ↑, Cdc2 (Tyr 15) ↓, Myt-1↓, Cdc25C↓, caspase-3-9↑, ERK phosphorylation↓, VEGF⊥ 
Flavonoids 
 Honokiol Magnolia officinalis, Magnolia grandiflora, Magnolia spp. Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), anti-inflammation, antiangiogenesis, antiautophagy, immunomodulation, anticancer, gastrointestinal disorders, cough, anxiety, and allergies Glioblastoma, melanoma, gastric, leukemia, skin, colon, breast, ovarian, pancreatic, hepatocellular, colorectal, lung, prostate, human renal mesangial, head and neck squamous carcinoma Fluconazole, Epigallocatechi n gallate (EGCG), TNFα CDK1⊥, Bcl-2↓, Bax↑, cyclin D1↓, pAKT↓, γ-secretase activity↓, γ-secretase complex proteins↓, PPARγ⊥, COX-2⊥, NF-κB⊥, EGFR/P13K/AKt↓; JunB↓and JunD↓ caspase-8↑, caspase-9↑, caspase-3↑, PARP↑, p53↑, CD31 staining↓, LH↑, p38⊥, NF-κB⊥, Bcl-XL↓, Bad↑, cyclin E↓, (Cdk2 and Cdk4)↓, Cdk↑, p21 and p27↑, NF-κB↓, Bcl-2↓, Mcl-1↓, surcivin↓, VEGF↓, STAT3⊥, HG-induced IL1β⊥, IL18⊥, TNFα⊥, -PGE2⊥, NO⊥, and TGFβ1⊥, MCP-1 ⊥, MIP-1α⊥, EGFR targeting TKI⊥, Akt⊥ erlotinib⊥, EGFR signaling⊥, MAPK⊥, cyclin D1⊥ 
 Magnolol Magnolia officinalis, Magnolia obovata. Antiproliferation (cell-cycle arrest, apoptosis), immunomodulation, anticancer, antianxiety, antidepressant, antioxidant, anti-inflammatory, antiangiogenesis, and hepatoprotective effects Glioblastoma, bladder, breast, colon, gastric, skin, ovarian, lung, prostate, melanoma, liver cancer, cervical epitheloid carcinoma, leukemia, fibrosarcoma, neuroblastoma, thyroid carcinoma TNFα, curcumin p21/Cip1↑, p27/Kip1↑, Hypoxia⊥, HIF1α↑, VEGF↑, AMPK↑, Bcl2↓, Bax↑, p53↑, Bax/Bcl-2↑, caspase-3↑, Cyclin B1↓, Cyclin A↓, CDK-4↓, Cdc2↓, Cip↑, caspase-8↑, PARP↑, NF-κB↓, HER2↓, -PI3K/Akt↓, Bad↑, Bcl-X(S)↑, Bcl-X(L)↓, MMP-2↓, MMP-9↓, caspase-3, 9↑, ERK↑, Raf-1↑, Ca(2+) ↑, Cyto-c↑, bcl-2↓, LTC4⊥, LTB4⊥, IgE⊥, cPLA2⊥, 5-LO⊥, MMP-9⊥, Ca(2+)↑, caspase-7↑, ADP-ribose↓, phosphatase↑ 
 Jaceosidin Artemisia princeps, Artemisia iwayomogi, Artemisia argyi, Artemisia copa, Artemisia vestita, Saussurea medusa, Eupatorium arnottianum, Eupatorium lindleyanum, Centaurea phyllocephala, Centaurea nicaeensis, Nipponanthemum nipponicum, Arnica chamissonis, Arnica Montana, Vervain officinalis, Lantana montevidensis, Eriodictyon californicum Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), anti-inflammation Human endometrial, human ovary cancer, glioblastoma, breast, epithelial, prostate, cervical, mammary epithelial TNFα Cdc2↓, cyclin B1↓, complex⊥, caspase-9↑, MMP.↓, p53↑, Bax↑, COX-2↑, MMP-9↑, TPA⊥, protein E6 and E7⊥, p53⊥, Bax↑, Bcl-2↓, caspase-3↑, p53↑, p21↑, ERK1/2⊥ 
 Casticin Vitex rotundifolia, V. agnus castus, V. trifolia, V. negundo, Daphne genkwa, Achillea millefolium, Ficus microcarpa, Fructus viticis, Crataegus pinnatifida, Pavetta crassipes, Nelsonia canescens, Citrus unshu, Centipeda minima, Clausena excavate, Croton betulaster, Artemisia abrotanum L., Camellia sinensis Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), premenstrual syndrome, anti-inflammation, antianxiety, immunomodulation, antimalarial, antimicrobial, and antifungal properties Cervical, pancreatic, colon, breast, lung, gastric, ovarian, liver, colorectal, leukemia, prostate TRAIL, TNFα, cisplatin, curcumin Bcl-2↓, Bcl-xL↓, XIAP↓, caspase-3↑, caspase-9↑, Cyclin B1↓, Bax↑, TNF↓, DR5↑, MMP2↓, MMP9↓, NF-κB↓, STAT3↓, FOXO3a↓, FoxM1↓, CDK1↓, cdc25B↓, cyclin B↓, p27KIP1↑, Cyclin A↓, cFLIP↓, survivin↓, cytochrome c↑, Bid↑ 
Sesquiterpenes 
 Costunolide Inula helenium, Saussurea lappa, Magnolia grandiflora Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), anti-inflammation, anticancer, anti-inflammatory, antiviral, antifungal Liver, ovarian, breast, bladder, melanoma, leukemia, prostate, human monocyte, gastric, colorectal TNFα, taxol, cisplatin Bcl-2 ↓, caspase-3↑, -8↑, and -9↑, Bax↑, Fas↑, Cdc2↓, cyclin B1↓; p21WAF1↑, pro-caspase-8↑, pro-caspase-3↑; JNK↑; PI3-K; PKC; ERK↑, NF-κB↓, cyclin E↓; p21↑, VEGF↓ 
 Parthenolide Tanacetum parthenium., Tanacetum vulgare, Centaurea ainetensis, Tanacetum larvatum, Helianthus Annuus, Anvillea radiate, Magnolia kobus, Magnolia virginiana, Magnolia ovate, Magnolia grandiflora, Liriodendron tulipifera, Michelia, Magnolia champaca, Michelia floribunda, Tsoongiodendron odorum, Artemisia ludoviciana, Calea zacatechichi, Polymnia maculate, Achillea falcata Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), anti-inflammation, antiangiogenesis, autophagy, immunomodulation, and cytotoxic effects Breast, skin, melanoma, malignant glioma, epidermal tumorigenesis, liver, gastric, lung, bladder, prostate, bile duct carcinomas, pancreatic, myeloma, leukemia, colorectal, Burkitt lymphoma, epithelial ovarian, osteosarcoma TTRAIL, gemcitabin, taxol, TNFα, cisplatin, curcumin, okadaic acid, geldanamycin, buthionine sulfoximine Bax↑, Bcl2↓, mRNA↓ metalloproteinase-9↓, STAT-3⊥, JNK↑, VEGF⊥, IL8⊥, ABCB5 transporter↓, Bcl-X(L) ↓, survivin↓, cyclin D1↓, IL8↓ matrix metalloproteinase 9↓, Akt phosphorylation↓, NF-κB↓, p65/NF-κB↓, Ki67↓, p21↑, antioxidant N-acetyl-L-cystein⊥, glutathione S-transferase↓ STAT3⊥, JAK⊥, tBid↑ of caspase-3/8/9↑, poly(ADP-ribose) polymerase⊥, p-ERK↑, p-p38↑, p38 and SAPK/JNK↑, PKC-alpha⊥, pro-caspase-3↓, p65↓, VEGF⊥, IL6 mRNA⊥, IkappaB-alpha↑, p53↑, ROS↑, JNK↑, Bid↑ 
 Alantolactone Inula helenium, L., Inula japonica Aucklandia lappa, Radix inulae Inula racemosa Anti-inflammatory, antimicrobial, anticancer, cytotoxicity, antifungal, oxidoreductase, and antiproliferative Prostate, glioblastoma, colon, leukemia, liver, lung — Bax/Bcl-2↑, caspase-3↑, STAT3⊥, caspase-8, MMP↓, Bid↑, NF-B/p65↓, p53↑, Bax↑, Bcl-2↓, caspase-9↑, caspase-3↑, ADP-ribose↓, NF-κB⊥, ROS↑, activin/SMAD3 signaling↑, Cripto-1/ActRII⊥, ROS↑, cytochrome-c↑, Bax↑, PARP↓, ADP-ribose↓, NF-B⊥, DNA-binding↓, IκBα phosphorylation↓, p21↑, Bcr/Abl↓, P-glycoprotein↓, cyclin B1↓, cyclin-dependent protein kinase-1↓ 
 Isoalantolactone Inula helenium, L., Inula japonica Aucklandia lappa, Radix inulae Inula racemosa Anti-inflammatory, antimicrobial, anticancer, cytotoxicity, antifungal, oxidoreductase, and antiproliferative Prostate gastric pancreatic leukemia — p38↑, MAPK↑, Bax↑, and cleaved caspase-3↑, Bcl-2↓, PI3K/Akt⊥, PARP↑ 
Diterpenoids 
 Oridonin Isodon rubescens Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), anti-inflammation, autophagy, and immunomodulation Breast, astrocytoma, leukemia, lung, hepatoma, prostate, colorectal, pancreatic, ovarian, human multiple myeloma, human histocytic lymphoma, hepatocellular, cervical, neuroblastoma, laryngeal, gastric, murine fibrosarcoma, melanoma, epidermoid carcinoma, osteosarcoma TRAIL, gemcitabin, taxol, TNFα, cisplatin, curcumin, arsenic trioxide (As2O3), Wogonin Caspase-8↓, NF-κB (p65)↓, IKKα↓, IKKβ↓, phospho-mTOR↓, Fas↑, PPARγ↑, MMP-2/MMP- 9↓, β1/FAK⊥, caspase-3↑, LYN⊥, ABL⊥, Akt/mTOR↓, Raf/MEK/ERK↓ and STAT5↓, AML1-ETO↓, c-Kit(+)⊥, c-Met-NF-κB-COX-2↑, c-Met-Bcl-2-caspase-3, Bcl-2/Bax ratio↑, AVOs↓, LC3-I⊥, LC3-II⊥, P21↑, FAS⊥, SREBP1⊥, AP- 1↓, NF-κB↓, P38↓, p21↑, p27↑, p16↑, c-myc p38↑, p53↑, (MAPK)-p38, cyclin B1 and p-cdc2 (T161)↓, p53↑, Akt↓, ROS↓, SIRT1↓, NF-κB↑, caspase-1↑, IL-1β↑, XIAP↓, Grp78↑, α-CP1↓, Bcl-2↓, caspase- 8↑, procaspase-3-9↓, pro-TNFα↑, p53↓, caspase-9↓, DeltaPsim↓, ERK↓, p38↑, MAPK↑, JNK↑ 
 Pseudolaric Acid B Pseudolarix kaempferi Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), immunomodulation, anticancer, and anti-inflammatory and antiangiogenesis effects Microvessel endothelial, prostate, glioblastoma, umbilical vein endothelial, murine fibrosarcoma, bladder, colon, lung, breast, melanoma, ovarian, leukemia, gastric, liver Taxol, TNFα NF-kB⊥, p65⊥, IL2↓, IkB-α ⊥, cyclin B1↑, CDK1↑, cyclin D1↓ p53↑, Bax↑, Bcl-2↓, 1α and cyclin E↓, cdc2↑, cdc2↓, survivin↓, caspase-3↑, COX-2⊥, STAT3, I-κB↓, Tubulin, binding of colchicine to tubulin⊥, bcl-x(L) ⊥, NAG-1↑, JNK↑, ERK↓, Wee1 kinase and p21↑, Bcl-xL↓, Bax↑, caspase-7↑, Fas/APO-1↑, Bcl-2 binding with Beclin 1⊥, Akt phosphorylation↓ 
Polyphenolic 
 Wedelolactone Eclipta alba, Wedelia calandulaceae, Wedelia chinensis, Eclipta prostrata Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), anti-inflammation, and hepatoprotective effects Breast, prostate, neuroblastoma, pancreatic, mammary carcinosarcoma, myeloma, leukemia, adenoma, glioma IFNγ NF-κB↓, PARP↑, IIα↓, p-p53↑, caspase-3↑, caspase-7↑, c-JNK↑, PKCϵ↓, IKKα↓, Bax↑, Bcl- xL↓, p21↑, p27↑, Bcl-2↓, IL6↓, IL6R↓, c-myc, IKK↓, p-TAK1, IKKβ↓, IKKα↓, IL1β↓, STAT-3↓, TLR-4↑, TLR-7↑, TLR-8↑, Akt↓, TNFα↓, IκB↓ 
Alkaloids 
 Evodiamine Evodia rutaecarpa Antioxidant, antiproliferation (cell-cycle arrest, apoptosis), anti-inflammation, antimicrobial, anticancer, antimetastatic, and anticarcinogenesis Murine Lewis lung, hepatocellular, leukemia, gastric, pancreatic, colon, human thyroid cancer, melanoma, colorectal, breast, cervix carcinoma, prostate Gemcitabin, taxol, TNF-α, cisplatin Atgs↑, 3-MA⊥, IL6↓, STAT3⊥, AP-1⊥, PLC-γ1⊥, XIAP⊥, Bax↑, CDK1⊥, ND cyclinB1↑, PI3K⊥, Akt⊥, PKA⊥, mTOR⊥, PTEN⊥, NF-κB↓, cyclinA↓, cyclinA-dependent kinase 2↓, cdc25c↓, TUNEL↑, procaspase-3-8-9↓, cdc25C↑, cyclin B1↑, cdc2-p161 protein↑, cdc2-p15, caspase-3-8-9↑, Fas- L↑, p53↑, p21↑, Bcl-2↓, TopI⊥, Raf-1↓, Bax↑, Bcl-2↑, Bcl-x(L) ↓, Beclin 1↑, LC3↑, Cdc2↑, cyclin B1↑, Cdc2 (Thr 161) ↑, Cdc2 (Tyr 15) ↓, Myt-1↓, Cdc25C↓, caspase-3-9↑, ERK phosphorylation↓, VEGF⊥ 

NOTE: ↓, downregulation; ↑, upregulation; ⊥, inhibition.

Table 2.

Prevention of cancer with natural compounds

CompoundsCancer typeTumor cell linesp53 statusCell-cycle arrestReferences
Flavonoids 
 Magnolol Glioblastoma, bladder, breast, colon, gastric, skin, ovarian, lung, prostate, melanoma, liver cancer, cervical epitheloid carcinoma, leukemia, fibrosarcoma, neuroblastoma, thyroid carcinoma U373, T24, 5637, MDA-MB-231, HCT- 116, SW480, SGC-7901, A431, SKOV3, TOV21G, CH27, A549, H460, PC-3, A375-S2, B16-BL6, COLO-205, HepG2, HEp-2, HeLa, 2H3, HT-1080, SH-SY5Y, CGTH W-2 — G0–G1 phase (39, 40, 102, 115, 152–161) 
 Casticin Cervical, pancreatic, colon, breast, lung, gastric, ovarian, liver, colorectal, leukemia HeLa, CasKi, SiHa, PANC-1, MCF-7, A549, SGC-7901, HO-8910, SKOV3, HepG2, PLC/PRF/5, MN1, MDD2, MCF-7, A431, HeLa, CCRF-CEM, CEM/ADR5000, P27kip1, P21waf1, pCDC2, K562, HL-60, Kasumi-1 Mutant p53 G2–M phase (80, 132, 133, 162–165) 
 Honokiol Glioblastoma, melanoma, gastric, leukemia, skin, colon, breast, ovarian, pancreatic, hepatocellular, colorectal, lung, prostate, human renal mesangial, head and neck squamous carcinoma A549, H1299, H460, H226, T98G, U251, B16-F10, UACC903, MKN45, SCM-1, NB4, K562, B-CLL, ChR, B-CLL, MT-2, MT-4, C5/MJ, SLB-1, HUT-102, MT-1, TL-OmI, SKH-1, CT26, HT-29, MCF-7, 4T1, MDA-MB -231, SKOV3, Coc1, A2780, Angelen MiaPaCa, Panc1, HepG2, HCT116, CT26, HCT116-CH2, HCT116-CH3, HepG2, A549, LL2, PC-3, LNCaP, HRMCs 1483, Cal-33 — G2–M phase (38–40, 156, 157, 166–178) 
    G0–G1 phase  
 Jaceosidin Human endometrial, human ovary cancer, glioblastoma, breast, epithelial, cervical, mammary epithelial Hec1A, CAOV-3, SKOV-3, U87, MCF10A, SiHa, CaSki, MCF10A-ras — G2–M phase (134, 179–181) 
Sesquiterpenes 
 Costunolide Hepatocellular carcinoma, ovarian, breast, bladder, melanoma, leukemia, prostate, human monocyte, gastric HCC, SKOV3, A2780, MPSC1, MPSC1PT, A2780PT, SKOV3PT, MDA-MB-231, MCF-7, MDA-MB-231, T24, B-16, A2058, HT-29, HepG2, HL-60, U937, A549, SK-MEL-2, XF498, HCT-15, LNCaP, PC-3, DU-145, THP-1, SGC-7901 Mutant p53 wild-type p53 G2–M phase (112, 135, 160, 182–186) 
 Parthenolide Breast, skin, melanoma, malignant glioma, epidermal tumorigenesis, liver, gastric, lung, bladder, prostate, bile duct carcinomas, pancreatic, myeloma, leukemia, colorectal, Burkitt lymphoma, epithelial ovarian, osteosarcoma MCF-7, MDMB-231, LCC9, ABCB5+, A375, 1205Lu, WM793, U87MG, U373, JB6P+, SH-J1, HepG2, Hep3B, SK-Hep1, MKN-28, MKN-45, MKN-74, SGC7901, A549, NSCLC, 5637, RT-4, PC3, DU145, VCAP, LAPC4, BxPC-3, PANC-1, MIAPaCa-2, RPMI8226, HL-60, U937, NB4, MV-4-11, MOLM-13, HT-29, SW620, LS174T, Raji+, OVCAR-3, K-OV-3, LM8, LM7 — G2–M phase (187–201) 
 Alantolactone Liver, glioblastoma, colon, leukemia, lung HepG2, Bel-7402, SMMC-7721, U87, HCT-8, HL-60, K562, K562, ADR, A549, MK-1, HeLa and B16F10 — G2–M phase (49, 50, 105, 125, 126) 
 Isoalantolactone Prostate, pancreatic, leukemia, gastric Hepa1c1c7, BPRc1, LNCaP, PC3, DU-145, SGC-7901, HL-60, HepG2-C8, PANC-1 — G2–M phase (98, 124, 126, 136) 
Diterpenoids 
 Pseudolaric Acid B Microvessel endothelial, Prostate, glioblastoma, umbilical vein endothelial, murine fibrosarcoma, bladder, colon, lung, breast, melanoma, ovarian, leukemia, gastric, murine fibrosarcoma, liver DU-145, PC-3, U87, HUVECs, L929, 5637, HT-29, COLO-205, HCT-15, A-549, HOP-18, MCF-7, MDA-MB-231, MALME-3M, SK-MEL-2, SK-28, OVCAR-3, SK-OV-3, HL-60, CCRF-CEM, K562, MGC803, L929, Bel-7402 — G2–M phase (141, 202–210) 
 Oridonin Breast, astrocytoma, leukemia, lung, hepatom, prostate, colorectal, pancreatic, ovarian, human multiple myeloma, human histocytic lymphoma, hepatocellular, cervical, neuroblastoma, laryngeal, gastric, murine fibrosarcoma, melanoma, epidermoid carcinoma, osteosarcoma MCF-7, MDA-MB-231, C6, Ph+ ALL SUP-B15, t(8;21), L1210, A549, SPC-A-1, K562, Bel-7402, PC-3, LNCaP, SW480, SW620, SW1116, Lovo, SW480, BxPC-3, PANC-1, A2780, PTX10, RPMI8266, U937, APL, HepG2, BEL7402, HeLa, SK-N-AS, HEp-2, MKN45, L929, K1735M2, A375-S2, A431, U2OS, MG63, SaOS-2 — G2–M phase (33, 124, 211–228) 
Polyphenolic 
 Wedelolactone Breast, prostate, neuroblastoma, pancreatic, mammary carcinosarcoma, myeloma, leukemia, adenoma, glioma MDA-MB-231, MDA-MB-468, PrEC, LNCaP, PC-3, DU145, 22Rv1, SK-N-AS, SK-N-BE, PANC-1, MIA-MSLN, W256, U266, B-CLL, GH3, C6 — S and G2–M phase (229–237) 
Alkaloids 
 Evodiamine Murine Lewis lung, hepatocellular, leukemia, gastric, pancreatic, colon, human thyroid cancer, melanoma, colorectal, breast, cervix carcinoma, prostate LLC, HepG2, SMMC-7721, K562, THP-1, CCRF-CEM, CCRF-CEM/C1, U937, SGC-7901, SW1990, ARO, A375-S2, COLO-205, MCF-7, NCI/ADR-RES, HeLa, DU145, PC-3, LNCaP — G2–M phase (238–244) 
CompoundsCancer typeTumor cell linesp53 statusCell-cycle arrestReferences
Flavonoids 
 Magnolol Glioblastoma, bladder, breast, colon, gastric, skin, ovarian, lung, prostate, melanoma, liver cancer, cervical epitheloid carcinoma, leukemia, fibrosarcoma, neuroblastoma, thyroid carcinoma U373, T24, 5637, MDA-MB-231, HCT- 116, SW480, SGC-7901, A431, SKOV3, TOV21G, CH27, A549, H460, PC-3, A375-S2, B16-BL6, COLO-205, HepG2, HEp-2, HeLa, 2H3, HT-1080, SH-SY5Y, CGTH W-2 — G0–G1 phase (39, 40, 102, 115, 152–161) 
 Casticin Cervical, pancreatic, colon, breast, lung, gastric, ovarian, liver, colorectal, leukemia HeLa, CasKi, SiHa, PANC-1, MCF-7, A549, SGC-7901, HO-8910, SKOV3, HepG2, PLC/PRF/5, MN1, MDD2, MCF-7, A431, HeLa, CCRF-CEM, CEM/ADR5000, P27kip1, P21waf1, pCDC2, K562, HL-60, Kasumi-1 Mutant p53 G2–M phase (80, 132, 133, 162–165) 
 Honokiol Glioblastoma, melanoma, gastric, leukemia, skin, colon, breast, ovarian, pancreatic, hepatocellular, colorectal, lung, prostate, human renal mesangial, head and neck squamous carcinoma A549, H1299, H460, H226, T98G, U251, B16-F10, UACC903, MKN45, SCM-1, NB4, K562, B-CLL, ChR, B-CLL, MT-2, MT-4, C5/MJ, SLB-1, HUT-102, MT-1, TL-OmI, SKH-1, CT26, HT-29, MCF-7, 4T1, MDA-MB -231, SKOV3, Coc1, A2780, Angelen MiaPaCa, Panc1, HepG2, HCT116, CT26, HCT116-CH2, HCT116-CH3, HepG2, A549, LL2, PC-3, LNCaP, HRMCs 1483, Cal-33 — G2–M phase (38–40, 156, 157, 166–178) 
    G0–G1 phase  
 Jaceosidin Human endometrial, human ovary cancer, glioblastoma, breast, epithelial, cervical, mammary epithelial Hec1A, CAOV-3, SKOV-3, U87, MCF10A, SiHa, CaSki, MCF10A-ras — G2–M phase (134, 179–181) 
Sesquiterpenes 
 Costunolide Hepatocellular carcinoma, ovarian, breast, bladder, melanoma, leukemia, prostate, human monocyte, gastric HCC, SKOV3, A2780, MPSC1, MPSC1PT, A2780PT, SKOV3PT, MDA-MB-231, MCF-7, MDA-MB-231, T24, B-16, A2058, HT-29, HepG2, HL-60, U937, A549, SK-MEL-2, XF498, HCT-15, LNCaP, PC-3, DU-145, THP-1, SGC-7901 Mutant p53 wild-type p53 G2–M phase (112, 135, 160, 182–186) 
 Parthenolide Breast, skin, melanoma, malignant glioma, epidermal tumorigenesis, liver, gastric, lung, bladder, prostate, bile duct carcinomas, pancreatic, myeloma, leukemia, colorectal, Burkitt lymphoma, epithelial ovarian, osteosarcoma MCF-7, MDMB-231, LCC9, ABCB5+, A375, 1205Lu, WM793, U87MG, U373, JB6P+, SH-J1, HepG2, Hep3B, SK-Hep1, MKN-28, MKN-45, MKN-74, SGC7901, A549, NSCLC, 5637, RT-4, PC3, DU145, VCAP, LAPC4, BxPC-3, PANC-1, MIAPaCa-2, RPMI8226, HL-60, U937, NB4, MV-4-11, MOLM-13, HT-29, SW620, LS174T, Raji+, OVCAR-3, K-OV-3, LM8, LM7 — G2–M phase (187–201) 
 Alantolactone Liver, glioblastoma, colon, leukemia, lung HepG2, Bel-7402, SMMC-7721, U87, HCT-8, HL-60, K562, K562, ADR, A549, MK-1, HeLa and B16F10 — G2–M phase (49, 50, 105, 125, 126) 
 Isoalantolactone Prostate, pancreatic, leukemia, gastric Hepa1c1c7, BPRc1, LNCaP, PC3, DU-145, SGC-7901, HL-60, HepG2-C8, PANC-1 — G2–M phase (98, 124, 126, 136) 
Diterpenoids 
 Pseudolaric Acid B Microvessel endothelial, Prostate, glioblastoma, umbilical vein endothelial, murine fibrosarcoma, bladder, colon, lung, breast, melanoma, ovarian, leukemia, gastric, murine fibrosarcoma, liver DU-145, PC-3, U87, HUVECs, L929, 5637, HT-29, COLO-205, HCT-15, A-549, HOP-18, MCF-7, MDA-MB-231, MALME-3M, SK-MEL-2, SK-28, OVCAR-3, SK-OV-3, HL-60, CCRF-CEM, K562, MGC803, L929, Bel-7402 — G2–M phase (141, 202–210) 
 Oridonin Breast, astrocytoma, leukemia, lung, hepatom, prostate, colorectal, pancreatic, ovarian, human multiple myeloma, human histocytic lymphoma, hepatocellular, cervical, neuroblastoma, laryngeal, gastric, murine fibrosarcoma, melanoma, epidermoid carcinoma, osteosarcoma MCF-7, MDA-MB-231, C6, Ph+ ALL SUP-B15, t(8;21), L1210, A549, SPC-A-1, K562, Bel-7402, PC-3, LNCaP, SW480, SW620, SW1116, Lovo, SW480, BxPC-3, PANC-1, A2780, PTX10, RPMI8266, U937, APL, HepG2, BEL7402, HeLa, SK-N-AS, HEp-2, MKN45, L929, K1735M2, A375-S2, A431, U2OS, MG63, SaOS-2 — G2–M phase (33, 124, 211–228) 
Polyphenolic 
 Wedelolactone Breast, prostate, neuroblastoma, pancreatic, mammary carcinosarcoma, myeloma, leukemia, adenoma, glioma MDA-MB-231, MDA-MB-468, PrEC, LNCaP, PC-3, DU145, 22Rv1, SK-N-AS, SK-N-BE, PANC-1, MIA-MSLN, W256, U266, B-CLL, GH3, C6 — S and G2–M phase (229–237) 
Alkaloids 
 Evodiamine Murine Lewis lung, hepatocellular, leukemia, gastric, pancreatic, colon, human thyroid cancer, melanoma, colorectal, breast, cervix carcinoma, prostate LLC, HepG2, SMMC-7721, K562, THP-1, CCRF-CEM, CCRF-CEM/C1, U937, SGC-7901, SW1990, ARO, A375-S2, COLO-205, MCF-7, NCI/ADR-RES, HeLa, DU145, PC-3, LNCaP — G2–M phase (238–244) 

Plants provide an extensive reservoir of natural products, demonstrating important structural diversity, and offer a wide variety of novel and exciting chemical entities and have a long history of use in the treatment of several illnesses. The significance of natural products in health care is supported by a report that 80% of the global population still relies on plant-derived medicines to address their health care needs (8). It is also reported that 50% of all drugs in clinical use are natural products, or their derivatives, or their analogs (9), and 74% of the most important drugs consist of plant-derived active ingredients (10). There are more than 3,000 plant species that have been reported to be used in the treatment of cancer in modern medicine (11–14).

There is a continued interest in the investigation of extracts of microorganisms, terrestrial plants, and marine life forms to search for anticancer compounds (12). Indeed, since 1920s with Berren blum, chemopreventive began (11), after a period of relative dormancy, re-entered the cancer research mainstream in the 1970s through the work of Sporn and colleagues (15). Till now, molecules derived from Mother Nature have played and continue to impart a dominant role in the discovery of compounds for the development of conventional drug for the treatment of most human diseases (16).

Medical indications of natural compounds and related drugs, including anticancer, antibacterial, antiparasitic, anticoagulant, and immune suppressant agents, are being used to treat 87% of all categorized human diseases (12). Since 1970s, drug discovery was based on screening of a large number of natural and synthetic compounds; until with the advent of computer and other molecular biology techniques, resulting in the modern and rational drug discovery (17). The selected compounds and many other natural products have traditionally provided a rich source of drugs for cancer treatment (11).

Although different approaches are available for the discovery of novel and potential therapeutic agents, natural products from medicinal plants are still one of the best reservoirs for novel agents with new medicinal activities. Thus, identification of natural compound selectively has ability to not only block or inhibit initiation of carcinogenesis, but also to reverse the promotional stages by inducing apoptosis and growth arrest in cancer cells without cytotoxic effects in normal cells (18). The chemopreventive properties and molecular targets of selected promising natural compounds are detailed in Table 1, Figs. 2 and 3.

Figure 2.

Molecular targets of the promising natural compounds (change to BLACK/WHITE form). The schematic diagram of the molecular machinery and possible targets for the cell signaling pathways activated by natural compounds is different for different compounds. Multiple growth factor receptors such as, EGFR, insulin-like growth factor 1 receptor, FGF, and platelet-derived growth factor receptor are activated at the cell surface in tumorigenesis. Their activation activates several downstream signaling pathways including, Ras-MAPK (ERK and JNK) pathways, JAK-STAT pathways, PI3K-AKT pathways, and the NF-κB pathways. The selected natural compounds, for example, inhibit the receptors at the cell surface either by inducing their degradation, which ultimately modulate the downstream signaling pathways important for proliferation, angiogenesis, and apoptosis.

Figure 2.

Molecular targets of the promising natural compounds (change to BLACK/WHITE form). The schematic diagram of the molecular machinery and possible targets for the cell signaling pathways activated by natural compounds is different for different compounds. Multiple growth factor receptors such as, EGFR, insulin-like growth factor 1 receptor, FGF, and platelet-derived growth factor receptor are activated at the cell surface in tumorigenesis. Their activation activates several downstream signaling pathways including, Ras-MAPK (ERK and JNK) pathways, JAK-STAT pathways, PI3K-AKT pathways, and the NF-κB pathways. The selected natural compounds, for example, inhibit the receptors at the cell surface either by inducing their degradation, which ultimately modulate the downstream signaling pathways important for proliferation, angiogenesis, and apoptosis.

Close modal
Figure 3.

Anticancer properties of the promising natural compounds (change to BLACK/WHITE form). The selected natural compounds restrain cancer by modulating multiple signaling pathways, resulting in the inhibition of the initiation of carcinogenesis, proliferation, angiogenesis, and oxidation so forth, and induction of cell-cycle arrest, apoptosis, autophagy, or differentiation.

Figure 3.

Anticancer properties of the promising natural compounds (change to BLACK/WHITE form). The selected natural compounds restrain cancer by modulating multiple signaling pathways, resulting in the inhibition of the initiation of carcinogenesis, proliferation, angiogenesis, and oxidation so forth, and induction of cell-cycle arrest, apoptosis, autophagy, or differentiation.

Close modal

Programmed cell death also called apoptosis play crucial roles for embryonic development and tissue homeostasis of multicellular organisms. It is carried out in a regulated way, which is associated with typical morphologic features like cell shrinkage, chromatin condensation, and cytoplasmic membrane blabbing. Dysregulated apoptosis has been implicated in a variety of diseases, including tumor formation or even development of cancer cell drug resistance (19).

Apoptosis is triggered through two well-characterized pathways in mammalian cells. The first one is extrinsic pathway, depending on triggering of death receptors (e.g., TNF), transmembrane proteins expressed on the cell surface, and the second is intrinsic pathway, mediated by molecules released from the mitochondria (e.g., Bcl-2 protein family; ref. 20).

The extrinsic apoptosis pathway is initiated through the binding of ligand (Fas-associated death domain) to death receptors that contain an intracellular death domain (death-inducing signaling complexes; refs. 21, 22). The intrinsic pathway is activated by physical or chemical stimulations, such as hypoxia, growth factor deprivation, cell detachment, or stress signals.

A set of cysteine proteases, both pathways cause the activation of the initiator caspases, which then activate effector caspases. Caspases are cysteine-dependent aspartate-specific proteases and are regulated at a posttranslational level which ensures that they can be rapidly activated. They are first synthesized or expressed in cells as inactive proenzyme which consists of a prodomain, a small subunit, and a large subunit forms that require oligomerization and/or cleavage for activation. However, caspase-independent apoptosis is also reported (23).

Apoptosis is characterized by chromatin condensation and DNA fragmentation, and it is mediated by caspases (24). Many apoptotic signals are mediated to cell death machinery through p53 with other proteins such as TNF, Fas, and TRAIL receptors that are highly specific physiologic mediators of the extrinsic signaling pathway of apoptosis. Mitochondria are involved in a variety of key events, such as release of caspases activators, changes in electron transport, loss of mitochondrial membrane potential (MMP), and participation of both pro-and antiapoptotic Bcl-2 family proteins (25, 26). This breakthrough finding may have important implication for targeted cancer therapy and modern application of natural compounds.

Natural compounds, including flavonoids, sesquiterpenes lactones, alkaloid, diterpenoid, and polyphenolic have been extensively studied and found to exhibit a broad spectrum of chemo preventive properties against multiple cancer types in both cell culture and animal models. Currently, several preventive trials are ongoing. For insistence, the cell signaling pathways activated by anticancer natural compound agents are numerous and different for different targets. Moreover, the same compound activates different signaling pathways depending on the cell types. The main signaling pathways activated by anticancer chemopreventive agents are illustrated in Fig. 2.

In normal cells, certain cellular signals control and regulate their growth and all other mechanisms. When these signals and mechanisms are altered because of various factors, including mutations that prevent cells to undergo apoptosis, normal cells are transformed into cancerous cells. Studies thus so far suggest that inhibition of any one of these altered signals or mechanisms together is helpful in alleviation of cancer.

p53 and its family members pathway

The tumor suppressor p53 considered as guardian of the genome plays a pivotal role in controlling the cell cycle, apoptosis, genomic integrity, and DNA repair in response to various genotoxic stresses (25, 27, 28). Once active, p53 can bind to regulatory DNA sequences and activate the expression of target genes, which is important for the suppression of tumor formation as well as for mediating the cellular responses to many standard DNA damage inducing cancer therapies by cycle inhibition (p21, reprimo, cyclin G1, GADD45, 14-3-3) and angiogenesis (TSP1, Maspin, BAI1, GD-AIF), induction of apoptosis (PERP, NOXA, PUMA, p53AIP1, ASPP1/2, Fas, BAX, PIDD), and genetic stability (p21, DDB2, MSH2, XPC; refs. 29–32).

Recently, it has also been documented that many natural chemopreventive agents induce cell-cycle arrest and apoptosis by activating p53 and its target genes. Oridonin induced upregulation of the functional p53 protein in A2780 (33). Oridonin increased p53 and its target Bax and p21waf1 in prostate cancer LNCaP and NCI-H520 cells with wild-type p53 gene (33, 34). Oridonin also stabilizes p53 protein and sensitizes TRAIL (TNF receptor apoptosis-inducing ligand)-induced apoptosis, and prevents or delays chemotherapy resistance in A2780 cells (35). In human prostate cancer, honokiol activated p21 (PC-3 and LNCaP) and p53 protein expression (LNCaP; ref. 36).

Honokiol increased phosphorylated p53 in both HCT116H and CT116-CH3 cell lines (37). In skin cancer, p53 activation is lead to the induction of DNA fragmentation and apoptosis (38). Honokiol is particularly effective in several tumor xenograft systems with deficits in p53 signaling, including PC3, MDA-MD-231, and SVR cells (39). Furthermore, honokiol in a concentration- and time-dependent manner independent of their androgen responsiveness or p53 status induced Bax, Bak, and Bad in PC-3, LNCaP, and C4-2 cells (40). p53 expression had no remarkable changes in honokiol induced in human colorectal RKO cell line (41).

Casticin also induced p53-mediated apoptosis by activating its proapoptotic protein Bax in U251, U87, and U373 glioma cells (42). Casticin induces a p53-independent apoptosis in a human non–small cell lung carcinoma cell lines H460, A549, and H157 (43). Mechanism of casticin for malignant tumors is suppressed through c-Myc in p53-mutated Hs578T cells (44).

The signaling pathways that depend on p53 are essential components of cellular responses to stress. Parthenolide in four cell lines, HCT116, RKO colon carcinoma, NCI-H1299 lung carcinoma, and HL60 myeloblastoma, induced a significant reduction in the frequency of apoptotic cells in UV-irradiated p53-proficient lines (45, 46). Parthenolide activated p53 and other MDM2-regulated tumor-suppressor proteins (47). Synergistic apoptotic effects of parthenolide and okadaic acid treatment increased p53 accompanied by lowering in p-Akt and pS166-Mdm2 levels under PTEN action (48).

It has also been documented that alantolactone significantly increased the expression of p53 in HepG2 cells (49, 50) with concomitant increase of its downstream target genes, mainly cyclin-dependent kinase inhibitor p21 in adriamycin-resistant human erythroleukemia cell line K562/ADR (51). Alantolactone induces p53-independent apoptosis in prostate cancer PC-3 cells (52).

NF-κB and its family member pathway

The pro-oncogenic NF-κB is a master transcription factor consisting of closely related proteins that generally exist as dimers and bind to a common DNA sequence within the promoters of target genes, called the κB B site, which promote transcription of target genes through the recruitment of coactivators and corepressors (53). The NF-κB pathway plays an important role in tumorigenesis through transactivation of genes involved in cell proliferation, apoptosis, tumor cell invasion, metastasis, and angiogenesis (54). The NF-κB1 family of transcription factors consists of five members, NF-κB1 (p50), NF-κB2 (p52), c-Rel, RelB, and RelA (p65), which share an N-terminal Rel homology domain responsible for DNA binding and homodimerization and heterodimerization through ankyrin repeats, covering the nuclear localization sequence of NF-κB (53, 55). In this momentum, NF-κB is normally sequestered in the cytoplasm via association with its endogenous inhibitor IκB. Furthermore, IκB-α is rapidly phosphorylated by kinase IKK (IκB kinase) in two catalytic subunits, IKK-α and IKK-β, and one regulatory subunit IKK-γ (56).

NF-κB and other signaling pathways that are involved in its activation by free radicals, inflammatory stimuli, cytokines, carcinogens, tumor promoters, endotoxins, γ-radiation, UV light, and X-rays are highly significant in cellular growth and transformation, suppression of apoptosis, invasion, metastasis, chemotherapy resistance, radio resistance, and inflammation (57). Furthermore, other agents including TNFα, IL1, IL6, and COX-2, 5 in an inflammatory microenvironment are also highly involved in tumor progression, incursion of adjoining tissues, angiogenesis, and metastasis (58).

Activation of NF-κB inhibits apoptosis by inducing the expression of Bcl-2 family members and caspases inhibitor (59). The major activity of NF-κB and its family members is to help proteolytic matrix metalloproteinase's enzyme that promotes tumor invasion. Hence, IKKa promotes metastasis in prostate cancer via inhibition of mammary serine protease inhibitor (maspin; refs. 60, 61) and also stimulates angiogenesis, by activating IL8 and VEGF (58). However, accumulation of the IκBα protein through proteasome inhibition prevents the activation of antiapoptotic NF-κB resulting in tumor cell apoptosis (62).

The detail of these studies validated NF-κB as a potent and novel target for cancer therapy. They demonstrated that NF-κB signaling pathways played critical role in a wide variety of biologic, physiologic, and pathologic processes, mainly in promoting cell survival through induction of its target genes. Each study individually taken, stimulate the motivation and dedicated insight for developing natural compound NF-κB inhibitors.

Many studies have been carried out on whether natural compound-related cancer inhibits expression of NF-κB or not. All the selected natural compound chemopreventive agents act as potent inhibitors of the NF-κB pathways. Wedelolactone, an inhibitor of IκB kinase, suppressed both TNFα-induced IκB phosphorylation and NF-κB phosphorylation at Ser 536 and Ser 468 (63), parthenolide (64–66), and honokiol (67, 68). Costunolide inhibited the activation of Akt and NF-κB and the expression of antiapoptotic factors B-cell lymphoma-extra large (Bcl-xL) and X-linked inhibitor of apoptosis protein (XIAP) in 11Z cells (69–71), magnolol inhibits ERK1/2 phosphorylation and NF-κB translocation (72, 73), PI3K/Akt/caspase and Fas-L/NF-κB signaling pathways might account for the responses of A375-S2 cell death induced by evodiamine (74, 75). Oridonin (76), alantolactone (77, 78), isoalantolactone (79), casticin (80), pseudolaric acid B (81), and jaceosidin (82), each of them has an inhibitory effect on NF-κB and its associated proteins. These compounds may inhibit one or more steps in NF-κB signaling pathway and its upstream growth factor receptors that activate the signaling cascade, translocation of NF-κB to the nucleus, DNA binding of the dimers, or interactions with the basal transcriptional machinery. Thereupon, they can induce apoptosis in cancer cells, offering a promising strategy for the treatment of different malignancies including cancer (Table 1 and Fig. 2; ref. 83).

Nuclear factor-related factor 2 signaling pathway

In cancer chemoprevention, nuclear factor-related factor 2 (Nrf2) is a potential molecular target for natural compounds. Several selected natural compounds are reported as a potential candidate for chemoprevention, by stimulating the accumulation of NrF2 in the nucleus and play a major role in transcriptional activation of phase II detoxification enzymes. Low concentrations of parthenolide led to Nrf2-dependent HO-1 induction accompanied by the attenuation of its apoptogenic effect in Choi-CK and SCK cells. Furthermore, with the protein kinase C-α inhibitor Ro317549 (Ro), parthenolide-mediated apoptosis inhibits expression and nuclear translocation of Nrf2, resulting in blockage of HO-1 expression. Parthenolide also stimulated oxidation of KEAP1 in normal prostate epithelial cells, leading to increased Nrf2 (NFE2L2) levels and subsequent Nrf2-dependent expression of antioxidant enzymes (84, 85). Costunolide and CH2-BL induced HO-1 expression and Nrf2 nuclear accumulation in RAW264.7 macrophages (86). Oridonin activates Nrf2 signaling pathway, leading to accumulation of the Nrf2 protein and activation of the Nrf2-dependent cytoprotective response (87). Isoalantolactone stimulates the accumulation of Nrf2 in the nucleus of both Hepa1c1c7 cells and its mutant BPRc1 cells (88). Alantolactone also stimulated the nuclear accumulation of Nrf2 in HepG2-C8 cells (89).

Transducers and activators of transcription and its family member pathways

STAT is a novel signal transduction pathway to the nucleus that has been uncovered through the study of transcriptional activation in response to IFN. It has been implicated in many processes including development, differentiation, immune function, proliferation, survival, and epithelial-to-mesenchymal transition (90, 91).

Activation of various tyrosine kinases leads to phosphorylation, dimerization, and nuclear localization of the STAT proteins, binding to specific DNA elements and direct transcription. Constitutive activation of STAT3 and STAT5 has been reported to be implicated in many cancers such as myeloma, lymphoma, leukemia, and several solid tumors (90–92). Furthermore, seven mammalian STAT family members known such as STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, and STAT6 have been cloned and share common structural elements.

During the last decade, the natural compounds have been implicated to modulate STAT activation in tumor cells. Some selected agents are part, such as honokiol increases expression and activity of SPH-1 that further deactivates the STAT3 pathway (93), wedelolactone inhibits STAT1 dephosphorylation through specific inhibition of T-cell protein tyrosine phosphatase, which is important tyrosine phosphatase for STAT1 (94). Parthenolide shows strong STAT inhibition-mediated transcriptional suppression of proapoptotic genes (64–66), and alantolactone inhibits STAT3 activation in HepG2 cells (49). Therefore, these cumulative observations from both in vitro and/or in vivo studies have not only validated STAT as a novel target for cancer chemotherapy, and also hence provided the rationale for developing natural compound STAT inhibitors.

Growth factors and their receptors family pathway

Growth factors are proteins that bind to receptors on the cell surface and are reported to regulate a number of cellular processes, with the primary result of activating cellular proliferation and differentiation (95), apoptosis, and rearrangement of cytoskeleton (96). Several growth factor signaling molecules are implicated in carcinogenesis. Among them are endothelial growth factor, platelet-derived growth factor, FGF, transforming growth factor, insulin-like growth factor, and colony-stimulating factor (97).

As an important intracellular pathway consequence of growth factor receptor activation, several downstream signalings, such as PI3K-Akt and Ras-MAPK also become active. These signaling pathways have significant impacts on the fact that it is associated with poor prognosis, tumor progression, and become targets for many natural chemopreventive and chemotherapeutic agents.

Isoalantolactone inhibits phosphorylation of PI3K/Akt on SGC-7901 cells (98), and alantolactone seems to induce detoxifying enzymes via activation of the PI3K and JNK signaling pathways (89). In cervical carcinoma HeLa cell line, oridonin may suppress constitutively activated targets of phosphatidylinositol 3-kinase (Akt, FOXO, and GSK3; ref. 99). In pancreatic cancer, evodiamine augments the therapeutic effect of gemcitabine through direct or indirect negative regulation of the PI3K/Akt pathway (100) and also in A375-S2 cells (74).

Magnolol protects SH-SY5Y cells against acrolein-induced oxidative stress and prolongs SH-SY5Y cell survival through regulating the JNK/mitochondria/caspase, PI3K/MEK/ERK, and PI3K/Akt/FoxO1 signaling pathways (101). In addition, in SGC-7901 cells, magnolol induces apoptosis through mitochondria and PI3K/Akt-dependent pathways (102). Magnolol also suppressed the activation of MAPKs (ERK, JNK, and p38) and the PI3K/AKT/mTOR signaling pathway in mES/EB-derived endothelial-like cells (23708970). Honokiol decreases the PI3K/mTOR pathway activity in tumor cells, but not in freshly stimulated T cells (103). It seems to be mediated by interrupting the early activated intracellular signaling molecule PI3K/Akt, but not Src, the extracellular signal-regulated kinase, and p38 (104). These reports showed that natural compounds, mainly the selected one, rapidly induce the phosphorylation of Akt after the stimulation and they can be used as a potent inhibitor against cancer cells.

Cripto-1 and its allied protein signaling pathways

In the process of normal cellular function, the dysfunction of activin signaling constituted an active part of tumor formation. To address this phenomenon, activin is blocked in cancer cells by the complex formed by Cripto-1, activin, and activin receptor type II (ActRII). In human colon adenocarcinoma HCT-8 cells, alantolactone performs its antitumor effect by interrupting the interaction between Cripto-1 and the ActRIIA in the activin signaling pathway (105).

Mitochondria dysfunction is the key link in the chain of development of pathologies associated with the violation of cellular energy metabolism, including cancer. Mitochondria have become an important component of the apoptosis execution machinery, cytochrome c, initiator in the mitochondrial apoptosis pathway, and can be released from the intermembrane of mitochondria after mitochondria depolarization (106–108).

Recently, many studies reported that the mitochondria play a fundamental role in the processes leading to cell death (109). Identification of the loss of MMP through toxicity is the key piece of natural compounds' process (110). Several reports reveal that the effects of selected natural compounds on the intrinsic and extrinsic pathways of apoptosis have been examined in many cell lines, including HL-60, costunolide induces the reactive oxygen species (ROS)–mediated mitochondrial permeability transition and resultant cytochrome c release associated with increased expression of Bax, downregulation of Bcl-2, survivin and significant activation of caspase-3, and its downstream target PARP (111, 112). Honokiol induced release of cytochrome c into cytosol and a loss of MMP (Δψm), associated with inhibition of EGFR-STAT3 signaling and downregulation of STAT3 target genes and downregulation of Bcl-2 and upregulation of Bax expression in MDR KB and RASMCs cells (113, 114). Magnolol induced apoptosis in MCF-7 and HCT-116 cells via the intrinsic pathway with release of AIF from mitochondria accompanied by downregulation of antiapoptotic protein Bcl-2 and upregulation of proapoptotic protein p53 and Bax (115, 116). To get a better insight into the mechanism of delaying cellular aging by mitochondria-targeted natural compound-induced cytotoxicity, the changes in membrane permeability, MMP, and cytochrome c localization, which influence mitochondrial biologic mechanisms, development of mitochondria-addressed compounds highly specific for chemical processes is one of the most promising ways to develop approaches for chemotherapy.

The human body constantly generates free radicals such as superoxide (O2), hydrogen peroxide (H2O2), nitric oxide, peroxynitrile, and hypochlorous acid and other ROS as a result of aerobic metabolism (117, 118). ROS are cellular signals generated ubiquitously by all mammalian cells, and long-term exposure to physiologic or psychologic stress is associated with the production of oxidative species through intracellular damage to DNA, RNA, proteins, and lipids but their regulation induced cell proliferation, differentiation, and apoptosis, which are essential for proper cell functioning (119, 122). ROS are well known mediators of intracellular signaling of cascades. During cellular redox, the excessive generation of ROS can induce oxidative stress, loss of cell functioning, and apoptosis (123).

Induction of apoptosis of cancer cells by n-hexane fraction of sesquiterpene is mediated through activation of proteases, which act on specific substrates leading to the degradation of PARP and other cytoskeletal proteins, responsible for many of the morphologic and biochemical features of apoptosis in cancer cells (49, 50, 124–126). Furthermore, once caspases activated, it might target the permeability of mitochondria, resulting in the loss of MMP concomitant with increased production of ROS, and this activity eventually causes disruption of membrane integrity (123). In addition, several studies revealed that apoptosis induction in chemotherapy depends on many factors like increase in ROS, oxidation of cardiolipin, reduced MMP, and release of cytochrome c (124). To restored cell viability, N-Acetyl Cysteine (NAC), a specific ROS inhibitor blocks completely apoptosis mediated by several natural compounds such as isoalantolactone in PANC-1 cells. The activation of p38 MAPK and Bax is directly dependent on ROS generation.

Cancer chemotherapy involves deregulation of cell proliferation and survival, inducing cell-cycle arrest, cell death, and apoptosis by generating ROS and their various enzyme systems, including the mitochondrial electron transport chain, cytochrome, lipoxygenase, COX, the NADPH oxidase complex, xanthine oxidase, and peroxisomes (127, 128).

Several studies reported that the promising natural compounds influenced the generation of ROS. In microglial cells, honokiol and magnolol-induced apoptosis associated with the inhibition of IFNγ ± LPS-induced iNOS expression, NO, and ROS production (129, 130). Jaceosidin increased intracellular accumulation of ROS in MCF10A-ras cells (131). In HeLa, CasKi, SiHa cell lines, casticin markedly increased the levels of intracellular ROS (132, 133). Parthenolide enhanced geldanamycin-induced changes in the apoptosis-related protein levels, ROS formation, nuclear damage, and cell death in human epithelial ovarian carcinoma OVCAR-3 and SK-OV-3 cell lines (134).

Induction of apoptosis in T24 and MDA-MB-231 cells by costunolide is associated with the generation of ROS and disruption of MMP (Δψm; ref. 112). In ovarian cancer cell lines [MPSC1 (PT), A2780 (PT), and SKOV3 (PT)], costunolide induced a significant increase in intracellular ROS (135). The specific ROS inhibitor, NAC, restored cell viability and completely blocked isoalantolactone-mediated apoptosis indicating that isoalantolactone induces ROS-dependant apoptosis through intrinsic pathway in human pancreatic PANC-1 cells (124). It also induced apoptosis in both androgen-sensitive (LNCaP) as well as androgen-independent (PC3 and DU-145) prostate cancer cells with the generation of ROS and dissipation of MMP (Δψm; ref. 136). Alantolactone induced apoptosis accompanied by ROS generation and mitochondrial transmembrane potential dissipation (49, 137). In hepatic stellate, HeLa, and U937 cells, oridonin induced biologic processes, mainly intracellular ROS generation (138, 139). Pseudolaric acid B induced ROS generation and mitochondrial dysfunction in L929 cells (140). It also caused the elevation of ROS level in DU145 cells (141). In human malignant melanoma A375-S2 and cervix carcinoma HeLa cells, evodiamine induced apoptotic process associated with ROS release through both extrinsic and intrinsic pathways (142, 143).

Checkpoint controls function to ensure that chromosomes are intact and that critical stages of the cell cycle are completed before the following stage is initiated. One checkpoint operates during S and G2 to prevent the activation of mitosis-promoting factor, which is composed of a cyclin and cyclin-dependent kinase (Cdk) that triggers entrance of a cell into mitosis by inducing chromatin condensation and nuclear envelope breakdown; it is also called maturation-promoting factor. Another checkpoint operates during early mitosis to prevent activation of adenomatous polyposis coli and the initiation of anaphase until the mitotic spindle apparatus is completely assembled and all chromosome kinetochores are properly attached to spindle fibers. Checkpoints that function in response to DNA damage prevent entry into S or M until the damage is repaired (144–146).

When these signals are altered because of various mutations that prevent cells from undergoing apoptosis, normal cells are transformed into cancerous cells and undergo high proliferation. Therefore, to arrest cancerous cell proliferation, regulation of apoptosis and its signaling pathways play a critical role (8, 147, 148). This behavior may lead to cell-cycle arrest and upregulation of proapoptotic-related proteins expression (49–51). In addition, it also documented that the selected natural compounds induced cell-cycle arrest either G2–M, or S or G0–G1 phase. We have reviewed the effects of various signaling pathways that have been reported in selected natural compound-induced apoptosis (Fig. 3 and Table 2).

Antiangiogenic therapy is at the forefront of drug development. Knowledge of the multiple activities of natural compounds can assist with the development of natural compound derivatives and the design of preclinical and clinical trials that will maximize the potential benefit of natural compounds in the patient setting for cancer disorders. Thereupon, the natural compounds have been examined in human and recently reported. Parthenolide was found to inhibit the expression of matrix metalloproteinase-9 and urinary plasminogen activator and the migration of carcinoma cells in vitro, as well as osteolytic bone metastasis associated with breast cancer in vivo (149). At doses up to 4 mg daily by oral capsule to treat fever, it is barely detectable in the plasma (150). In combination with ciclopirox, parthenolide demonstrates greater toxicity against acute myeloid leukemia than treatment with either compound alone (151).

Natural products have been, and continue to be, a highly useful source of bioactive molecules. In this review, we have highlighted the recent progress of the natural compounds from Mother Nature with cytotoxic activities. Plants provide a broad spectrum of sources for modern anticancer drugs. Various preclinical findings and results of several in vitro and in vivo studies convincingly argue for potent role of natural compounds in the prevention and treatment of many types of cancer. Many reports on mechanism of actions of the promising compounds target multiple signaling pathways, which vary widely depending on cancer origin (11, 51).

According to the literature, the major molecular targets that have been characterized are the key challenge for researchers and scientists to use this information for effective cancer prevention in populations with different cancer risks. Moreover, low potency and poor bioavailability of natural compounds pose further challenges to scientists and researchers. The future, full with convergence of chemoprevention and chemotherapy drug development will open new avenues for natural compounds in reducing the public health impact of major cancers. However, additional preclinical studies and clinical trials are certainly yet required to elucidate the full spectrum of cytotoxic activities of the selected natural compounds either alone or in synergistic combination with other small molecules to further validate the usefulness of these agents as potent anticancer agents.

No potential conflicts of interest were disclosed.

This work was supported by Ministry of Science and Technology (No. 2010DFA31430), Ministry of Education of China (NCET-10–0316), National Natural Science Foundation of China (No. 30871301, 30700827), Jilin Provincial Science & Technology Department (20130521010JH, YYZX201241), Changchun Science & Technology Department (No. 2011114-11GH29), the Program for Introducing Talents to Universities (No. B07017), and the Fundamental Research Funds for the Central Universities (12SSXM005).

1.
Jemal
A
,
Siegel
R
,
Ward
E
,
Hao
Y
,
Xu
J
,
Murray
T
, et al
Cancer statistics
.
CA Cancer J Clin
2008
;
58
:
71
96
.
2.
Siegel
R
,
Naishadham
D
,
Jemal
A
. 
Cancer statistics for Hispanics/Latinos
.
CA Cancer J Clin
2012
;
62
:
283
98
.
3.
Jemal
A
,
Siegel
R
,
Xu
J
,
Ward
E
. 
Cancer statistics
.
CA Cancer J Clin
2010
;
60
:
277
300
.
4.
Wiart
C
. 
Goniothalamus species: a source of drugs for the treatment of cancers and bacterial infections?
Evid Based Complement Alternat Med
2007
;
4
:
299
311
.
5.
Glade
MJ
. 
Food, nutrition, and the prevention of cancer: a global perspective. American Institute for Cancer Research/World Cancer Research Fund, American Institute for Cancer Research
.
Nutrition
1999
;
15
:
523
6
.
6.
Manson
MM
. 
Cancer prevention–the potential for diet to modulate molecular signalling
.
Trends Mol Med
2003
;
9
:
11
8
.
7.
Christen
P
,
Cuendet
M
. 
Plants as a source of therapeutic and health products
.
Chimia (Aarau)
2012
;
66
:
320
3
.
8.
Fulda
S
. 
Evasion of apoptosis as a cellular stress response in cancer
.
Int J Cell Biol
2010
;
2010
:
370835
.
9.
Hsu
CL
,
Yu
YS
,
Yen
GC
. 
Anticancer effects of Alpinia pricei Hayata roots
.
J Agric Food Chem
2010
;
58
:
2201
8
.
10.
Jaganathan
SK
,
Mandal
M
. 
Antiproliferative effects of honey and of its polyphenols: a review
.
J Biomed Biotechnol
2009
;
2009
:
830616
.
11.
Amin
AR
,
Kucuk
O
,
Khuri
FR
,
Shin
DM
. 
Perspectives for cancer prevention with natural compounds
.
J Clin Oncol
2009
;
27
:
2712
25
.
12.
Cragg
GM
,
Newman
DJ
. 
Plants as a source of anti-cancer agents
.
J Ethnopharmacol
2005
;
100
:
72
9
.
13.
Elmore
S
. 
Apoptosis: a review of programmed cell death
.
Toxicol Pathol
2007
;
35
:
495
516
.
14.
Koehn
FE
,
Carter
GT
. 
The evolving role of natural products in drug discovery
.
Nat Rev Drug Discov
2005
;
4
:
206
20
.
15.
Sporn
MB
,
Dunlop
NM
,
Newton
DL
,
Smith
JM
. 
Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids)
.
Fed Proc
1976
;
35
:
1332
8
.
16.
Koehn
FE
,
Carter
GT
. 
Rediscovering natural products as a source of new drugs
.
Discov Med
2005
;
5
:
159
64
.
17.
Patwardhan
B
. 
Ethnopharmacology and drug discovery
.
J Ethnopharmacol
2005
;
100
:
50
2
.
18.
Lekphrom
R
,
Kanokmedhakul
S
,
Kanokmedhakul
K
. 
Bioactive styryllactones and alkaloid from flowers of Goniothalamus laoticus
.
J Ethnopharmacol
2009
;
125
:
47
50
.
19.
Johnstone
RW
,
Ruefli
AA
,
Lowe
SW
. 
Apoptosis: a link between cancer genetics and chemotherapy
.
Cell
2002
;
108
:
153
64
.
20.
Green
DR
. 
Apoptotic pathways: paper wraps stone blunts scissors
.
Cell
2000
;
102
:
1
4
.
21.
Ashkenazi
A
,
Dixit
VM
. 
Death receptors: signaling and modulation
.
Science
1998
;
281
:
1305
8
.
22.
Block
G
,
Patterson
B
,
Subar
A
. 
Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence
.
Nutr Cancer
1992
;
18
:
1
29
.
23.
Anichini
A
,
Mortarini
R
,
Sensi
M
,
Zanon
M
. 
APAF-1 signaling in human melanoma
.
Cancer Lett
2006
;
238
:
168
79
.
24.
Hengartner
MO
. 
The biochemistry of apoptosis
.
Nature
2000
;
407
:
770
6
.
25.
Heinrich
M
,
Robles
M
,
West
JE
,
Ortiz de Montellano
BR
,
Rodriguez
E
. 
Ethnopharmacology of Mexican asteraceae (Compositae)
.
Annu Rev Pharmacol Toxicol
1998
;
38
:
539
65
.
26.
Kreuger
MR
,
Grootjans
S
,
Biavatti
MW
,
Vandenabeele
P
,
D'Herde
K
. 
Sesquiterpene lactones as drugs with multiple targets in cancer treatment: focus on parthenolide
.
Anticancer Drugs
2012
;
23
:
883
96
.
27.
Bode
AM
,
Dong
Z
. 
Post-translational modification of p53 in tumorigenesis
.
Nat Rev Cancer
2004
;
4
:
793
805
.
28.
Budram-Mahadeo
V
,
Morris
PJ
,
Latchman
DS
. 
The Brn-3a transcription factor inhibits the pro-apoptotic effect of p53 and enhances cell cycle arrest by differentially regulating the activity of the p53 target genes encoding Bax and p21(CIP1/Waf1)
.
Oncogene
2002
;
21
:
6123
31
.
29.
Carr
AM
. 
Cell cycle. Piecing together the p53 puzzle
.
Science
2000
;
287
:
1765
6
.
30.
Lu
C
,
El-Deiry
WS
. 
Targeting p53 for enhanced radio-and chemo-sensitivity
.
Apoptosis
2009
;
14
:
597
606
.
31.
Sherr
CJ
,
Weber
JD
. 
The ARF/p53 pathway
.
Curr Opin Genet Dev
2000
;
10
:
94
9
.
32.
Vogelstein
B
,
Kinzler
KW
. 
Achilles' heel of cancer?
Nature
2001
;
412
:
865
6
.
33.
Chen
S
,
Cooper
M
,
Jones
M
,
Madhuri
TK
,
Wade
J
,
Bachelor
A
, et al
Combined activity of oridonin and wogonin in advanced-stage ovarian cancer cells: sensitivity of ovarian cancer cells to phyto-active chemicals
.
Cell Biol Toxicol
2011
;
27
:
133
47
.
34.
Chen
S
,
Gao
J
,
Halicka
HD
,
Huang
X
,
Traganos
F
,
Darzynkiewicz
Z
. 
The cytostatic and cytotoxic effects of oridonin (Rubescenin), a diterpenoid from Rabdosia rubescens, on tumor cells of different lineage
.
Int J Oncol
2005
;
26
:
579
88
.
35.
Chen
SS
,
Michael
A
,
Butler-Manuel
SA
. 
Advances in the treatment of ovarian cancer: a potential role of antiinflammatory phytochemicals
.
Discov Med
2012
;
13
:
7
17
.
36.
Hahm
ER
,
Singh
SV
. 
Honokiol causes G0-G1 phase cell cycle arrest in human prostate cancer cells in association with suppression of retinoblastoma protein level/phosphorylation and inhibition of E2F1 transcriptional activity
.
Mol Cancer Ther
2007
;
6
:
2686
95
.
37.
He
Z
,
Subramaniam
D
,
Ramalingam
S
,
Dhar
A
,
Postier
RG
,
Umar
S
, et al
Honokiol radiosensitizes colorectal cancer cells: enhanced activity in cells with mismatch repair defects
.
Am J Physiol Gastrointest Liver Physiol
2011
;
301
:
G929
37
.
38.
Chilampalli
S
,
Zhang
X
,
Fahmy
H
,
Kaushik
RS
,
Zeman
D
,
Hildreth
MB
, et al
Chemopreventive effects of honokiol on UVB-induced skin cancer development
.
Anticancer Res
2010
;
30
:
777
83
.
39.
Fried
LE
,
Arbiser
JL
. 
Honokiol, a multifunctional antiangiogenic and antitumor agent
.
Antioxid Redox Signal
2009
;
11
:
1139
48
.
40.
Hahm
ER
,
Arlotti
JA
,
Marynowski
SW
,
Singh
SV
. 
Honokiol, a constituent of oriental medicinal herb magnolia officinalis, inhibits growth of PC-3 xenografts in vivo in association with apoptosis induction
.
Clin Cancer Res
2008
;
14
:
1248
57
.
41.
Wang
T
,
Chen
F
,
Chen
Z
,
Wu
YF
,
Xu
XL
,
Zheng
S
, et al
Honokiol induces apoptosis through p53-independent pathway in human colorectal cell line RKO
.
World J Gastroenterol
2004
;
10
:
2205
8
.
42.
Liu
E
,
Kuang
Y
,
He
W
,
Xing
X
,
Gu
J
. 
Casticin induces human glioma cell death through apoptosis and mitotic arrest
.
Cell Physiol Biochem
2013
;
31
:
805
14
.
43.
Zhou
Y
,
Peng
Y
,
Mao
QQ
,
Li
X
,
Chen
MW
,
Su
J
, et al
Casticin induces caspase-mediated apoptosis via activation of mitochondrial pathway and upregulation of DR5 in human lung cancer cells
.
Asian Pac J Trop Med
2013
;
6
:
372
8
.
44.
Song
YC
,
Zhang
X
,
Lei
GY
,
Dang
CX
. 
[Vitexicarpin affects proliferation and apoptosis in mutated p53 breast cancer cell]
.
Zhonghua Yi Xue Za Zhi
2010
;
90
:
703
7
.
45.
Guzman
ML
,
Rossi
RM
,
Neelakantan
S
,
Li
X
,
Corbett
CA
,
Hassane
DC
, et al
An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells
.
Blood
2007
;
110
:
4427
35
.
46.
Szoltysek
K
,
Pietranek
K
,
Kalinowska-Herok
M
,
Pietrowska
M
,
Kimmel
M
,
Widlak
P
. 
TNFalpha-induced activation of NFkappaB protects against UV-induced apoptosis specifically in p53-proficient cells
.
Acta Biochim Pol
2008
;
55
:
741
8
.
47.
Gopal
YN
,
Chanchorn
E
,
Van Dyke
MW
. 
Parthenolide promotes the ubiquitination of MDM2 and activates p53 cellular functions
.
Mol Cancer Ther
2009
;
8
:
552
62
.
48.
Di Fiore
R
,
Drago-Ferrante
R
,
D'Anneo
A
,
Augello
G
,
Carlisi
D
,
De Blasio
A
, et al
In human retinoblastoma Y79 cells okadaic acid-parthenolide co-treatment induces synergistic apoptotic effects, with PTEN as a key player
.
Cancer Biol Ther
2013
;
14
:
922
31
.
49.
Khan
M
,
Li
T
,
Ahmad Khan
MK
,
Rasul
A
,
Nawaz
F
,
Sun
M
, et al
Alantolactone induces apoptosis in HepG2 cells through GSH depletion, inhibition of STAT3 activation, and mitochondrial dysfunction
.
Biomed Res Int
2013
;
2013
:
719858
.
50.
Lei
JC
,
Yu
JQ
,
Yin
Y
,
Liu
YW
,
Zou
GL
. 
Alantolactone induces activation of apoptosis in human hepatoma cells
.
Food Chem Toxicol
2012
;
50
:
3313
9
.
51.
Yang
C
,
Yang
J
,
Sun
M
,
Yan
J
,
Meng
X
,
Ma
T
. 
Alantolactone inhibits growth of K562/adriamycin cells by downregulating Bcr/Abl and P-glycoprotein expression
.
IUBMB Life
2013
;
65
:
435
44
.
52.
Rasul
A
,
Khan
M
,
Ali
M
,
Li
J
,
Li
X
. 
Targeting apoptosis pathways in cancer with alantolactone and isoalantolactone
.
ScientificWorldJournal
2013
;
2013
:
248532
.
53.
Aggarwal
BB
. 
Nuclear factor-kappaB: the enemy within
.
Cancer Cell
2004
;
6
:
203
8
.
54.
Orlowski
RZ
,
Baldwin
AS
 Jr
. 
NF-kappaB as a therapeutic target in cancer
.
Trends Mol Med
2002
;
8
:
385
9
.
55.
Baud
V
,
Karin
M
. 
Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls
.
Nat Rev Drug Discov
2009
;
8
:
33
40
.
56.
Solt
LA
,
May
MJ
. 
The IkappaB kinase complex: master regulator of NF-kappaB signaling
.
Immunol Res
2008
;
42
:
3
18
.
57.
Ghosh
S
,
Hayden
MS
. 
New regulators of NF-kappaB in inflammation
.
Nat Rev Immunol
2008
;
8
:
837
48
.
58.
Karin
M
,
Cao
Y
,
Greten
FR
,
Li
ZW
. 
NF-kappaB in cancer: from innocent bystander to major culprit
.
Nat Rev Cancer
2002
;
2
:
301
10
.
59.
Lin
WW
,
Karin
M
. 
A cytokine-mediated link between innate immunity, inflammation, and cancer
.
J Clin Invest
2007
;
117
:
1175
83
.
60.
Affara
NI
,
Coussens
LM
. 
IKKalpha at the crossroads of inflammation and metastasis
.
Cell
2007
;
129
:
25
6
.
61.
Luo
JL
,
Kamata
H
,
Karin
M
. 
IKK/NF-kappaB signaling: balancing life and death–a new approach to cancer therapy
.
J Clin Invest
2005
;
115
:
2625
32
.
62.
Biswas
DK
,
Iglehart
JD
. 
Linkage between EGFR family receptors and nuclear factor kappaB (NF-kappaB) signaling in breast cancer
.
J Cell Physiol
2006
;
209
:
645
52
.
63.
Tanabe
K
,
Matsushima-Nishiwaki
R
,
Yamaguchi
S
,
Iida
H
,
Dohi
S
,
Kozawa
O
. 
Mechanisms of tumor necrosis factor-alpha-induced interleukin-6 synthesis in glioma cells
.
J Neuroinflammation
2010
;
7
:
16
.
64.
Legendre
F
,
Dudhia
J
,
Pujol
JP
,
Bogdanowicz
P
. 
JAK/STAT but not ERK1/ERK2 pathway mediates interleukin (IL)-6/soluble IL-6R down-regulation of Type II collagen, aggrecan core, and link protein transcription in articular chondrocytes. Association with a down-regulation of SOX9 expression
.
J Biol Chem
2003
;
278
:
2903
12
.
65.
Mathema
VB
,
Koh
YS
,
Thakuri
BC
,
Sillanpaa
M
. 
Parthenolide, a sesquiterpene lactone, expresses multiple anti-cancer and anti-inflammatory activities
.
Inflammation
2012
;
35
:
560
5
.
66.
Nakshatri
H
,
Rice
SE
,
Bhat-Nakshatri
P
. 
Antitumor agent parthenolide reverses resistance of breast cancer cells to tumor necrosis factor-related apoptosis-inducing ligand through sustained activation of c-Jun N-terminal kinase
.
Oncogene
2004
;
23
:
7330
44
.
67.
Yamaguchi
M
,
Arbiser
JL
,
Weitzmann
MN
. 
Honokiol stimulates osteoblastogenesis by suppressing NF-kappaB activation
.
Int J Mol Med
2011
;
28
:
1049
53
.
68.
Zhu
X
,
Wang
Z
,
Hu
C
,
Li
Z
,
Hu
J
. 
Honokiol suppresses TNF-alpha-induced migration and matrix metalloproteinase expression by blocking NF-kappaB activation via the ERK signaling pathway in rat aortic smooth muscle cells
.
Acta Histochem
2014
;
116
:
588
95
.
69.
Butturini
E
,
Di Paola
R
,
Suzuki
H
,
Paterniti
I
,
Ahmad
A
,
Mariotto
S
, et al
Costunolide and Dehydrocostuslactone, two natural sesquiterpene lactones, ameliorate the inflammatory process associated to experimental pleurisy in mice
.
Eur J Pharmacol
2014
;
730C
:
107
115
.
70.
Kim
JH
,
Yang
YI
,
Lee
KT
,
Park
HJ
,
Choi
JH
. 
Costunolide induces apoptosis in human endometriotic cells through inhibition of the prosurvival Akt and nuclear factor kappa B signaling pathway
.
Biol Pharm Bull
2011
;
34
:
580
5
.
71.
Whipple
RA
,
Vitolo
MI
,
Boggs
AE
,
Charpentier
MS
,
Thompson
K
,
Martin
SS
. 
Parthenolide and costunolide reduce microtentacles and tumor cell attachment by selectively targeting detyrosinated tubulin independent from NF-kappaB inhibition
.
Breast Cancer Res
2013
;
15
:
R83
.
72.
Karki
R
,
Ho
OM
,
Kim
DW
. 
Magnolol attenuates neointima formation by inducing cell cycle arrest via inhibition of ERK1/2 and NF-kappaB activation in vascular smooth muscle cells
.
Biochim Biophys Acta
2013
;
1830
:
2619
28
.
73.
Li
MH
,
Kothandan
G
,
Cho
SJ
,
Huong
PT
,
Nan
YH
,
Lee
KY
, et al
Magnolol inhibits LPS-induced NF-kappaB/Rel activation by blocking p38 kinase in murine macrophages
.
Korean J Physiol Pharmacol
2010
;
14
:
353
8
.
74.
Wang
C
,
Li
S
,
Wang
MW
. 
Evodiamine-induced human melanoma A375-S2 cell death was mediated by PI3K/Akt/caspase and Fas-L/NF-kappaB signaling pathways and augmented by ubiquitin-proteasome inhibition
.
Toxicol In Vitro
2010
;
24
:
898
904
.
75.
Yang
J
,
Wu
LJ
,
Tashiro
S
,
Onodera
S
,
Ikejima
T
. 
Nitric oxide activated by p38 and NF-kappaB facilitates apoptosis and cell cycle arrest under oxidative stress in evodiamine-treated human melanoma A375-S2 cells
.
Free Radic Res
2008
;
42
:
1
11
.
76.
Zang
L
,
He
H
,
Ye
Y
,
Liu
W
,
Fan
S
,
Tashiro
S
, et al
Nitric oxide augments oridonin-induced efferocytosis by human histocytic lymphoma U937 cells via autophagy and the NF-kappaB-COX-2-IL-1beta pathway
.
Free Radic Res
2012
;
46
:
1207
19
.
77.
Chun
J
,
Choi
RJ
,
Khan
S
,
Lee
DS
,
Kim
YC
,
Nam
YJ
, et al
Alantolactone suppresses inducible nitric oxide synthase and cyclooxygenase-2 expression by down-regulating NF-kappaB, MAPK and AP-1 via the MyD88 signaling pathway in LPS-activated RAW 264.7 cells
.
Int Immunopharmacol
2012
;
14
:
375
83
.
78.
Wei
W
,
Huang
H
,
Zhao
S
,
Liu
W
,
Liu
CX
,
Chen
L
, et al
Alantolactone induces apoptosis in chronic myelogenous leukemia sensitive or resistant to imatinib through NF-kappaB inhibition and Bcr/Abl protein deletion
.
Apoptosis
2013
;
18
:
1060
70
.
79.
Jia
QQ
,
Wang
JC
,
Long
J
,
Zhao
Y
,
Chen
SJ
,
Zhai
JD
, et al
Sesquiterpene lactones and their derivatives inhibit high glucose-induced NF-kappaB activation and MCP-1 and TGF-beta1 expression in rat mesangial cells
.
Molecules
2013
;
18
:
13061
77
.
80.
Koh
DJ
,
Ahn
HS
,
Chung
HS
,
Lee
H
,
Kim
Y
,
Lee
JY
, et al
Inhibitory effects of casticin on migration of eosinophil and expression of chemokines and adhesion molecules in A549 lung epithelial cells via NF-kappaB inactivation
.
J Ethnopharmacol
2011
;
136
:
399
405
.
81.
Li
T
,
Wong
VK
,
Yi
XQ
,
Wong
YF
,
Zhou
H
,
Liu
L
. 
Pseudolaric acid B suppresses T lymphocyte activation through inhibition of NF-kappaB signaling pathway and p38 phosphorylation
.
J Cell Biochem
2009
;
108
:
87
95
.
82.
Lee
SH
,
Bae
EA
,
Park
EK
,
Shin
YW
,
Baek
NI
,
Han
EJ
, et al
Inhibitory effect of eupatilin and jaceosidin isolated from Artemisia princeps in IgE-induced hypersensitivity
.
Int Immunopharmacol
2007
;
7
:
1678
84
.
83.
Karin
M
. 
The IkappaB kinase -a bridge between inflammation and cancer
.
Cell Res
2008
;
18
:
334
42
.
84.
Xu
Y
,
Fang
F
,
Miriyala
S
,
Crooks
PA
,
Oberley
TD
,
Chaiswing
L
, et al
KEAP1 is a redox sensitive target that arbitrates the opposing radiosensitive effects of parthenolide in normal and cancer cells
.
Cancer Res
2013
;
73
:
4406
17
.
85.
Yun
BR
,
Lee
MJ
,
Kim
JH
,
Kim
IH
,
Yu
GR
,
Kim
DG
. 
Enhancement of parthenolide-induced apoptosis by a PKC-alpha inhibition through heme oxygenase-1 blockage in cholangiocarcinoma cells
.
Exp Mol Med
2010
;
42
:
787
97
.
86.
Pae
HO
,
Jeong
GS
,
Kim
HS
,
Woo
WH
,
Rhew
HY
,
Kim
HS
, et al
Costunolide inhibits production of tumor necrosis factor-alpha and interleukin-6 by inducing heme oxygenase-1 in RAW264.7 macrophages
.
Inflamm Res
2007
;
56
:
520
6
.
87.
Du
Y
,
Villeneuve
NF
,
Wang
XJ
,
Sun
Z
,
Chen
W
,
Li
J
, et al
Oridonin confers protection against arsenic-induced toxicity through activation of the Nrf2-mediated defensive response
.
Environ Health Perspect
2008
;
116
:
1154
61
.
88.
Seo
JY
,
Park
J
,
Kim
HJ
,
Lee
IA
,
Lim
JS
,
Lim
SS
, et al
Isoalantolactone from Inula helenium caused Nrf2-mediated induction of detoxifying enzymes
.
J Med Food
2009
;
12
:
1038
45
.
89.
Seo
JY
,
Lim
SS
,
Kim
JR
,
Lim
JS
,
Ha
YR
,
Lee
IA
, et al
Nrf2-mediated induction of detoxifying enzymes by alantolactone present in Inula helenium
.
Phytother Res
2008
;
22
:
1500
5
.
90.
Sano
S
,
Itami
S
,
Takeda
K
,
Tarutani
M
,
Yamaguchi
Y
,
Miura
H
, et al
Keratinocyte-specific ablation of Stat3 exhibits impaired skin remodeling, but does not affect skin morphogenesis
.
EMBO J
1999
;
18
:
4657
68
.
91.
Silver
DL
,
Montell
DJ
. 
Paracrine signaling through the JAK/STAT pathway activates invasive behavior of ovarian epithelial cells in Drosophila
.
Cell
2001
;
107
:
831
41
.
92.
Grandis
JR
,
Drenning
SD
,
Chakraborty
A
,
Zhou
MY
,
Zeng
Q
,
Pitt
AS
, et al
Requirement of Stat3 but not Stat1 activation for epidermal growth factor receptor-mediated cell growth In vitro
.
J Clin Invest
1998
;
102
:
1385
92
.
93.
Liu
SH
,
Wang
KB
,
Lan
KH
,
Lee
WJ
,
Pan
HC
,
Wu
SM
, et al
Calpain/SHP-1 interaction by honokiol dampening peritoneal dissemination of gastric cancer in nu/nu mice
.
PLoS ONE
2012
;
7
:
e43711
.
94.
Chen
Z
,
Sun
X
,
Shen
S
,
Zhang
H
,
Ma
X
,
Liu
J
, et al
Wedelolactone, a naturally occurring coumestan, enhances interferon-gamma signaling through inhibiting STAT1 protein dephosphorylation
.
J Biol Chem
2013
;
288
:
14417
27
.
95.
Klippel
A
,
Reinhard
C
,
Kavanaugh
WM
,
Apell
G
,
Escobedo
MA
,
Williams
LT
. 
Membrane localization of phosphatidylinositol 3-kinase is sufficient to activate multiple signal-transducing kinase pathways
.
Mol Cell Biol
1996
;
16
:
4117
27
.
96.
Kauffmann-Zeh
A
,
Rodriguez-Viciana
P
,
Ulrich
E
,
Gilbert
C
,
Coffer
P
,
Downward
J
, et al
Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB
.
Nature
1997
;
385
:
544
8
.
97.
Han
Z
,
Hong
L
,
Han
Y
,
Wu
K
,
Han
S
,
Shen
H
, et al
Phospho Akt mediates multidrug resistance of gastric cancer cells through regulation of P-gp, Bcl-2 and Bax
.
J Exp Clin Cancer Res
2007
;
26
:
261
8
.
98.
Rasul
A
,
Khan
M
,
Yu
B
,
Ali
M
,
Bo
YJ
,
Yang
H
, et al
Isoalantolactone, a sesquiterpene lactone, induces apoptosis in SGC-7901 cells via mitochondrial and phosphatidylinositol 3-kinase/Akt signaling pathways
.
Arch Pharm Res
2013
;
36
:
1262
9
.
99.
Hu
HZ
,
Yang
YB
,
Xu
XD
,
Shen
HW
,
Shu
YM
,
Ren
Z
, et al
Oridonin induces apoptosis via PI3K/Akt pathway in cervical carcinoma HeLa cell line
.
Acta Pharmacol Sin
2007
;
28
:
1819
26
.
100.
Wei
WT
,
Chen
H
,
Wang
ZH
,
Ni
ZL
,
Liu
HB
,
Tong
HF
, et al
Enhanced antitumor efficacy of gemcitabine by evodiamine on pancreatic cancer via regulating PI3K/Akt pathway
.
Int J Biol Sci
2012
;
8
:
1
14
.
101.
Dong
L
,
Zhou
S
,
Yang
X
,
Chen
Q
,
He
Y
,
Huang
W
. 
Magnolol protects against oxidative stress-mediated neural cell damage by modulating mitochondrial dysfunction and PI3K/Akt signaling
.
J Mol Neurosci
2013
;
50
:
469
81
.
102.
Rasul
A
,
Yu
B
,
Khan
M
,
Zhang
K
,
Iqbal
F
,
Ma
T
, et al
Magnolol, a natural compound, induces apoptosis of SGC-7901 human gastric adenocarcinoma cells via the mitochondrial and PI3K/Akt signaling pathways
.
Int J Oncol
2012
;
40
:
1153
61
.
103.
Crane
C
,
Panner
A
,
Pieper
RO
,
Arbiser
J
,
Parsa
AT
. 
Honokiol-mediated inhibition of PI3K/mTOR pathway: a potential strategy to overcome immunoresistance in glioma, breast, and prostate carcinoma without impacting T cell function
.
J Immunother
2009
;
32
:
585
92
.
104.
Kim
BH
,
Cho
JY
. 
Anti-inflammatory effect of honokiol is mediated by PI3K/Akt pathway suppression
.
Acta Pharmacol Sin
2008
;
29
:
113
22
.
105.
Shi
Y
,
Bao
YL
,
Wu
Y
,
Yu
CL
,
Huang
YX
,
Sun
Y
, et al
Alantolactone inhibits cell proliferation by interrupting the interaction between Cripto-1 and activin receptor type II A in activin signaling pathway
.
J Biomol Screen
2011
;
16
:
525
35
.
106.
Qiu
J
,
Luo
M
,
Wang
J
,
Dong
J
,
Li
H
,
Leng
B
, et al
Isoalantolactone protects against Staphylococcus aureus pneumonia
.
FEMS Microbiol Lett
2011
;
324
:
147
55
.
107.
Schmidt
TJ
,
Brun
R
,
Willuhn
G
,
Khalid
SA
. 
Anti-trypanosomal activity of helenalin and some structurally related sesquiterpene lactones
.
Planta Med
2002
;
68
:
750
1
.
108.
Xin
XL
,
Ma
XC
,
Liu
KX
,
Han
J
,
Wang
BR
,
Guo
DA
. 
Microbial transformation of alantolactone by Mucor polymorphosporus
.
J Asian Nat Prod Res
2008
;
10
:
933
7
.
109.
Birt
DF
,
Hendrich
S
,
Wang
W
. 
Dietary agents in cancer prevention: flavonoids and isoflavonoids
.
Pharmacol Ther
2001
;
90
:
157
77
.
110.
Blagosklonny
MV
. 
Aging: ROS or TOR
.
Cell Cycle
2008
;
7
:
3344
54
.
111.
Lee
MG
,
Lee
KT
,
Chi
SG
,
Park
JH
. 
Costunolide induces apoptosis by ROS-mediated mitochondrial permeability transition and cytochrome C release
.
Biol Pharm Bull
2001
;
24
:
303
6
.
112.
Rasul
A
,
Bao
R
,
Malhi
M
,
Zhao
B
,
Tsuji
I
,
Li
J
, et al
Induction of apoptosis by costunolide in bladder cancer cells is mediated through ROS generation and mitochondrial dysfunction
.
Molecules
2013
;
18
:
1418
33
.
113.
Fan
S
,
Li
X
,
Lin
J
,
Chen
S
,
Shan
J
,
Qi
G
. 
Honokiol inhibits tumor necrosis factor-alpha-stimulated rat aortic smooth muscle cell proliferation via caspase-and mitochondrial-dependent apoptosis
.
Inflammation
2014
;
37
:
17
26
.
114.
Wang
X
,
Beitler
JJ
,
Wang
H
,
Lee
MJ
,
Huang
W
,
Koenig
L
, et al
Honokiol enhances paclitaxel efficacy in multi-drug resistant human cancer model through the induction of apoptosis
.
PLoS ONE
2014
;
9
:
e86369
.
115.
Park
JB
,
Lee
MS
,
Cha
EY
,
Lee
JS
,
Sul
JY
,
Song
IS
, et al
Magnolol-induced apoptosis in HCT-116 colon cancer cells is associated with the AMP-activated protein kinase signaling pathway
.
Biol Pharm Bull
2012
;
35
:
1614
20
.
116.
Zhou
Y
,
Bi
Y
,
Yang
C
,
Yang
J
,
Jiang
Y
,
Meng
F
, et al
Magnolol induces apoptosis in MCF-7 human breast cancer cells through G2/M phase arrest and caspase-independent pathway
.
Pharmazie
2013
;
68
:
755
62
.
117.
Halliwell
B
. 
Free radicals, antioxidants, and human disease: curiosity, cause, or consequence?
Lancet
1994
;
344
:
721
4
.
118.
Poulsen
HE
,
Prieme
H
,
Loft
S
. 
Role of oxidative DNA damage in cancer initiation and promotion
.
Eur J Cancer Prev
1998
;
7
:
9
16
.
119.
Coso
S
,
Harrison
I
,
Harrison
CB
,
Vinh
A
,
Sobey
CG
,
Drummond
GR
, et al
NADPH oxidases as regulators of tumor angiogenesis: current and emerging concepts
.
Antioxid Redox Signal
2012
;
16
:
1229
47
.
120.
Guzik
TJ
,
Harrison
DG
. 
Vascular NADPH oxidases as drug targets for novel antioxidant strategies
.
Drug Discov Today
2006
;
11
:
524
33
.
121.
Hong
IS
,
Lee
HY
,
Kim
HP
. 
Anti-oxidative effects of Rooibos tea (Aspalathus linearis) on immobilization-induced oxidative stress in rat brain
.
PLoS ONE
2014
;
9
:
e87061
.
122.
Maraldi
T
. 
Natural compounds as modulators of NADPH oxidases
.
Oxid Med Cell Longev
2013
;
2013
:
271602
.
123.
Slater
AF
,
Stefan
C
,
Nobel
I
,
van den Dobbelsteen
DJ
,
Orrenius
S
. 
Signalling mechanisms and oxidative stress in apoptosis
.
Toxicol Lett
1995
;
82–83
:
149
53
.
124.
Khan
M
,
Ding
C
,
Rasul
A
,
Yi
F
,
Li
T
,
Gao
H
, et al
Isoalantolactone induces reactive oxygen species mediated apoptosis in pancreatic carcinoma PANC-1 cells
.
Int J Biol Sci
2012
;
8
:
533
47
.
125.
Khan
M
,
Yi
F
,
Rasul
A
,
Li
T
,
Wang
N
,
Gao
H
, et al
Alantolactone induces apoptosis in glioblastoma cells via GSH depletion, ROS generation, and mitochondrial dysfunction
.
IUBMB Life
2012
;
64
:
783
94
.
126.
Pal
HC
,
Sehar
I
,
Bhushan
S
,
Gupta
BD
,
Saxena
AK
. 
Activation of caspases and poly (ADP-ribose) polymerase cleavage to induce apoptosis in leukemia HL-60 cells by Inula racemosa
.
Toxicol In Vitro
2010
;
24
:
1599
609
.
127.
Evan
GI
,
Vousden
KH
. 
Proliferation, cell cycle and apoptosis in cancer
.
Nature
2001
;
411
:
342
8
.
128.
Inoue
M
,
Sato
EF
,
Nishikawa
M
,
Park
AM
,
Kira
Y
,
Imada
I
, et al
Mitochondrial generation of reactive oxygen species and its role in aerobic life
.
Curr Med Chem
2003
;
10
:
2495
505
.
129.
Chuang
DY
,
Chan
MH
,
Zong
Y
,
Sheng
W
,
He
Y
,
Jiang
JH
, et al
Magnolia polyphenols attenuate oxidative and inflammatory responses in neurons and microglial cells
.
J Neuroinflammation
2013
;
10
:
15
.
130.
Han
LL
,
Xie
LP
,
Li
LH
,
Zhang
XW
,
Zhang
RQ
,
Wang
HZ
. 
Reactive oxygen species production and Bax/Bcl-2 regulation in honokiol-induced apoptosis in human hepatocellular carcinoma SMMC-7721 cells
.
Environ Toxicol Pharmacol
2009
;
28
:
97
103
.
131.
Kim
MJ
,
Kim
DH
,
Lee
KW
,
Yoon
DY
,
Surh
YJ
. 
Jaceosidin induces apoptosis in ras-transformed human breast epithelial cells through generation of reactive oxygen species
.
Ann N Y Acad Sci
2007
;
1095
:
483
95
.
132.
Chen
D
,
Cao
J
,
Tian
L
,
Liu
F
,
Sheng
X
. 
Induction of apoptosis by casticin in cervical cancer cells through reactive oxygen species-mediated mitochondrial signaling pathways
.
Oncol Rep
2011
;
26
:
1287
94
.
133.
Zeng
F
,
Tian
L
,
Liu
F
,
Cao
J
,
Quan
M
,
Sheng
X
. 
Induction of apoptosis by casticin in cervical cancer cells: reactive oxygen species-dependent sustained activation of Jun N-terminal kinase
.
Acta Biochim Biophys Sin
2012
;
44
:
442
9
.
134.
Lee
CS
,
Kim
YJ
,
Lee
SA
,
Myung
SC
,
Kim
W
. 
Combined effect of Hsp90 inhibitor geldanamycin and parthenolide via reactive oxygen species-mediated apoptotic process on epithelial ovarian cancer cells
.
Basic Clin Pharmacol Toxicol
2012
;
111
:
173
81
.
135.
Yang
YI
,
Kim
JH
,
Lee
KT
,
Choi
JH
. 
Costunolide induces apoptosis in platinum-resistant human ovarian cancer cells by generating reactive oxygen species
.
Gynecol Oncol
2011
;
123
:
588
96
.
136.
Rasul
A
,
Di
J
,
Millimouno
FM
,
Malhi
M
,
Tsuji
I
,
Ali
M
, et al
Reactive oxygen species mediate isoalantolactone-induced apoptosis in human prostate cancer cells
.
Molecules
2013
;
18
:
9382
96
.
137.
Zhang
Y
,
Bao
YL
,
Wu
Y
,
Yu
CL
,
Huang
YX
,
Sun
Y
, et al
Alantolactone induces apoptosis in RKO cells through the generation of reactive oxygen species and the mitochondrial pathway
.
Mol Med Rep
2013
;
8
:
967
72
.
138.
Zang
L
,
He
H
,
Xu
Q
,
Yu
Y
,
Zheng
N
,
Liu
W
, et al
Reactive oxygen species H2O2 and *OH, but not O2*(-) promote oridonin-induced phagocytosis of apoptotic cells by human histocytic lymphoma U937 cells
.
Int Immunopharmacol
2013
;
15
:
414
23
.
139.
Zhang
YH
,
Wu
YL
,
Tashiro
S
,
Onodera
S
,
Ikejima
T
. 
Reactive oxygen species contribute to oridonin-induced apoptosis and autophagy in human cervical carcinoma HeLa cells
.
Acta Pharmacol Sin
2011
;
32
:
1266
75
.
140.
Qi
M
,
Fan
S
,
Yao
G
,
Li
Z
,
Zhou
H
,
Tashiro
S
, et al
Pseudolaric acid B-induced autophagy contributes to senescence via enhancement of ROS generation and mitochondrial dysfunction in murine fibrosarcoma L929 cells
.
J Pharmacol Sci
2013
;
121
:
200
11
.
141.
Zhao
D
,
Lin
F
,
Wu
X
,
Zhao
Q
,
Zhao
B
,
Lin
P
, et al
Pseudolaric acid B induces apoptosis via proteasome-mediated Bcl-2 degradation in hormone-refractory prostate cancer DU145 cells
.
Toxicol In Vitro
2012
;
26
:
595
602
.
142.
Yang
J
,
Wu
LJ
,
Tashino
S
,
Onodera
S
,
Ikejima
T
. 
Critical roles of reactive oxygen species in mitochondrial permeability transition in mediating evodiamine-induced human melanoma A375-S2 cell apoptosis
.
Free Radic Res
2007
;
41
:
1099
108
.
143.
Yang
J
,
Wu
LJ
,
Tashino
S
,
Onodera
S
,
Ikejima
T
. 
Reactive oxygen species and nitric oxide regulate mitochondria-dependent apoptosis and autophagy in evodiamine-treated human cervix carcinoma HeLa cells
.
Free Radic Res
2008
;
42
:
492
504
.
144.
Hofmann
DK
,
Fitt
WK
,
Fleck
J
. 
Checkpoints in the life-cycle of Cassiopea spp.: control of metagenesis and metamorphosis in a tropical jellyfish
.
Int J Dev Biol
1996
;
40
:
331
8
.
145.
Sanli
T
,
Steinberg
GR
,
Singh
G
,
Tsakiridis
T
. 
AMP-activated protein kinase (AMPK) beyond metabolism: a novel genomic stress sensor participating in the DNA damage response pathway
.
Cancer Biol Ther
2014
;
15
:
156
69
.
146.
Tamura
RE
,
de Vasconcellos
JF
,
Sarkar
D
,
Libermann
TA
,
Fisher
PB
,
Zerbini
LF
. 
GADD45 proteins: central players in tumorigenesis
.
Curr Mol Med
2012
;
12
:
634
51
.
147.
Lawen
A
. 
Apoptosis-an introduction
.
Bioessays
2003
;
25
:
888
96
.
148.
Reed
JC
. 
Apoptosis-based therapies
.
Nat Rev Drug Discov
2002
;
1
:
111
21
.
149.
Idris
AI
,
Libouban
H
,
Nyangoga
H
,
Landao-Bassonga
E
,
Chappard
D
,
Ralston
SH
. 
Pharmacologic inhibitors of IkappaB kinase suppress growth and migration of mammary carcinosarcoma cells in vitro and prevent osteolytic bone metastasis in vivo
.
Mol Cancer Ther
2009
;
8
:
2339
47
.
150.
Curry
EA
 III
,
Murry
DJ
,
Yoder
C
,
Fife
K
,
Armstrong
V
,
Nakshatri
H
, et al
Phase I dose escalation trial of feverfew with standardized doses of parthenolide in patients with cancer
.
Invest New Drugs
2004
;
22
:
299
305
.
151.
Sen
S
,
Hassane
DC
,
Corbett
C
,
Becker
MW
,
Jordan
CT
,
Guzman
ML
. 
Novel mTOR inhibitory activity of ciclopirox enhances parthenolide antileukemia activity
.
Exp Hematol
2013
;
41
:
799
807
e4
.
152.
Arora
S
,
Bhardwaj
A
,
Srivastava
SK
,
Singh
S
,
McClellan
S
,
Wang
B
, et al
Honokiol arrests cell cycle, induces apoptosis, and potentiates the cytotoxic effect of gemcitabine in human pancreatic cancer cells
.
PLoS ONE
2011
;
6
:
e21573
.
153.
Arora
S
,
Singh
S
,
Piazza
GA
,
Contreras
CM
,
Panyam
J
,
Singh
AP
. 
Honokiol: a novel natural agent for cancer prevention and therapy
.
Curr Mol Med
2012
;
12
:
1244
52
.
154.
Chen
LC
,
Lee
WS
. 
P27/Kip1 is responsible for magnolol-induced U373 apoptosis in vitro and in vivo
.
J Agric Food Chem
2013
;
61
:
2811
9
.
155.
Chen
MC
,
Lee
CF
,
Huang
WH
,
Chou
TC
. 
Magnolol suppresses hypoxia-induced angiogenesis via inhibition of HIF-1alpha/VEGF signaling pathway in human bladder cancer cells
.
Biochem Pharmacol
2013
;
85
:
1278
87
.
156.
Chen
XR
,
Lu
R
,
Dan
HX
,
Liao
G
,
Zhou
M
,
Li
XY
, et al
Honokiol: a promising small molecular weight natural agent for the growth inhibition of oral squamous cell carcinoma cells
.
Int J Oral Sci
2011
;
3
:
34
42
.
157.
Dikalov
S
,
Losik
T
,
Arbiser
JL
. 
Honokiol is a potent scavenger of superoxide and peroxyl radicals
.
Biochem Pharmacol
2008
;
76
:
589
96
.
158.
Fang
F
,
Gong
C
,
Qian
Z
,
Zhang
X
,
Gou
M
,
You
C
, et al
Honokiol nanoparticles in thermosensitive hydrogel: therapeutic effects on malignant pleural effusion
.
ACS Nano
2009
;
3
:
4080
8
.
159.
Hou
X
,
Yuan
X
,
Zhang
B
,
Wang
S
,
Chen
Q
. 
Screening active anti-breast cancer compounds from Cortex Magnolia officinalis by 2D LC-MS
.
J Sep Sci
2013
;
36
:
706
12
.
160.
Hsu
JL
,
Pan
SL
,
Ho
YF
,
Hwang
TL
,
Kung
FL
,
Guh
JH
. 
Costunolide induces apoptosis through nuclear calcium2+ overload and DNA damage response in human prostate cancer
.
J Urol
2011
;
185
:
1967
74
.
161.
Kang
YJ
,
Park
HJ
,
Chung
HJ
,
Min
HY
,
Park
EJ
,
Lee
MA
, et al
Wnt/beta-catenin signaling mediates the antitumor activity of magnolol in colorectal cancer cells
.
Mol Pharmacol
2012
;
82
:
168
77
.
162.
Ling
Y
,
Zhu
J
,
Fan
M
,
Wu
B
,
Qin
L
,
Huang
C
. 
Metabolism studies of casticin in rats using HPLC-ESI-MS(n)
.
Biomed Chromatogr
2012
;
26
:
1502
8
.
163.
Shen
JK
,
Du
HP
,
Yang
M
,
Wang
YG
,
Jin
J
. 
Casticin induces leukemic cell death through apoptosis and mitotic catastrophe
.
Ann Hematol
2009
;
88
:
743
52
.
164.
Yang
J
,
Yang
Y
,
Tian
L
,
Sheng
XF
,
Liu
F
,
Cao
JG
. 
Casticin-induced apoptosis involves death receptor 5 upregulation in hepatocellular carcinoma cells
.
World J Gastroenterol
2011
;
17
:
4298
307
.
165.
Ye
Q
,
Zhang
QY
,
Zheng
CJ
,
Wang
Y
,
Qin
LP
. 
Casticin, a flavonoid isolated from Vitex rotundifolia, inhibits prolactin release in vivo and in vitro
.
Acta Pharmacol Sin
2010
;
31
:
1564
8
.
166.
Jeong
JJ
,
Lee
JH
,
Chang
KC
,
Kim
HJ
. 
Honokiol exerts an anticancer effect in T98G human glioblastoma cells through the induction of apoptosis and the regulation of adhesion molecules
.
Int J Oncol
2012
;
41
:
1358
64
.
167.
Li
X
,
Guo
Q
,
Zheng
X
,
Kong
X
,
Shi
S
,
Chen
L
, et al
Preparation of honokiol-loaded chitosan microparticles via spray-drying method intended for pulmonary delivery
.
Drug Deliv
2009
;
16
:
160
6
.
168.
Li
Z
,
Liu
Y
,
Zhao
X
,
Pan
X
,
Yin
R
,
Huang
C
, et al
Honokiol, a natural therapeutic candidate, induces apoptosis and inhibits angiogenesis of ovarian tumor cells
.
Eur J Obstet Gynecol Reprod Biol
2008
;
140
:
95
102
.
169.
Liang
S
,
Fu
A
,
Zhang
Q
,
Tang
M
,
Zhou
J
,
Wei
Y
, et al
Honokiol inhibits HepG2 migration via down-regulation of IQGAP1 expression discovered by a quantitative pharmaceutical proteomic analysis
.
Proteomics
2010
;
10
:
1474
83
.
170.
Liu
H
,
Zang
C
,
Emde
A
,
Planas-Silva
MD
,
Rosche
M
,
Kuhnl
A
, et al
Anti-tumor effect of honokiol alone and in combination with other anti-cancer agents in breast cancer
.
Eur J Pharmacol
2008
;
591
:
43
51
.
171.
Liu
SH
,
Shen
CC
,
Yi
YC
,
Tsai
JJ
,
Wang
CC
,
Chueh
JT
, et al
Honokiol inhibits gastric tumourigenesis by activation of 15-lipoxygenase-1 and consequent inhibition of peroxisome proliferator-activated receptor-gamma and COX-2-dependent signals
.
Br J Pharmacol
2010
;
160
:
1963
72
.
172.
Mannal
PW
,
Schneider
J
,
Tangada
A
,
McDonald
D
,
McFadden
DW
. 
Honokiol produces anti-neoplastic effects on melanoma cells in vitro
.
J Surg Oncol
2011
;
104
:
260
4
.
173.
Rajendran
P
,
Li
F
,
Shanmugam
MK
,
Vali
S
,
Abbasi
T
,
Kapoor
S
, et al
Honokiol inhibits signal transducer and activator of transcription-3 signaling, proliferation, and survival of hepatocellular carcinoma cells via the protein tyrosine phosphatase SHP-1
.
J Cell Physiol
2012
;
227
:
2184
95
.
174.
Singh
T
,
Katiyar
SK
. 
Honokiol, a phytochemical from Magnolia spp., inhibits breast cancer cell migration by targeting nitric oxide and cyclooxygenase-2
.
Int J Oncol
2011
;
38
:
769
76
.
175.
Tian
W
,
Deng
Y
,
Li
L
,
He
H
,
Sun
J
,
Xu
D
. 
Honokiol synergizes chemotherapy drugs in multidrug resistant breast cancer cells via enhanced apoptosis and additional programmed necrotic death
.
Int J Oncol
2013
;
42
:
721
32
.
176.
Tian
W
,
Xu
D
,
Deng
YC
. 
Honokiol, a multifunctional tumor cell death inducer
.
Pharmazie
2012
;
67
:
811
6
.
177.
Vaid
M
,
Sharma
SD
,
Katiyar
SK
. 
Honokiol, a phytochemical from the Magnolia plant, inhibits photocarcinogenesis by targeting UVB-induced inflammatory mediators and cell cycle regulators: development of topical formulation
.
Carcinogenesis
2010
;
31
:
2004
11
.
178.
Wu
JP
,
Zhang
W
,
Wu
F
,
Zhao
Y
,
Cheng
LF
,
Xie
JJ
, et al
Honokiol: an effective inhibitor of high-glucose-induced upregulation of inflammatory cytokine production in human renal mesangial cells
.
Inflamm Res
2010
;
59
:
1073
9
.
179.
Ji
HY
,
Kim
SY
,
Kim
DK
,
Jeong
JH
,
Lee
HS
. 
Effects of eupatilin and jaceosidin on cytochrome p450 enzyme activities in human liver microsomes
.
Molecules
2010
;
15
:
6466
75
.
180.
Lee
JG
,
Kim
JH
,
Ahn
JH
,
Lee
KT
,
Baek
NI
,
Choi
JH
. 
Jaceosidin, isolated from dietary mugwort (Artemisia princeps), induces G2/M cell cycle arrest by inactivating cdc25C-cdc2 via ATM-Chk1/2 activation
.
Food Chem Toxicol
2013
;
55
:
214
21
.
181.
Lv
W
,
Sheng
X
,
Chen
T
,
Xu
Q
,
Xie
X
. 
Jaceosidin induces apoptosis in human ovary cancer cells through mitochondrial pathway
.
J Biomed Biotechnol
2008
;
2008
:
394802
.
182.
Choi
JH
,
Lee
KT
. 
Costunolide-induced apoptosis in human leukemia cells: involvement of c-jun N-terminal kinase activation
.
Biol Pharm Bull
2009
;
32
:
1803
8
.
183.
Choi
YK
,
Seo
HS
,
Choi
HS
,
Kim
SR
,
Shin
YC
,
Ko
SG
. 
Induction of Fas-mediated extrinsic apoptosis, p21WAF1-related G2/M cell cycle arrest and ROS generation by costunolide in estrogen receptor-negative breast cancer cells, MDA-MB-231
.
Mol Cell Biochem
2012
;
363
:
119
28
.
184.
Kim
SH
,
Danilenko
M
,
Kim
TS
. 
Differential enhancement of leukaemia cell differentiation without elevation of intracellular calcium by plant-derived sesquiterpene lactone compounds
.
Br J Pharmacol
2008
;
155
:
814
25
.
185.
Kim
TJ
,
Nam
KW
,
Kim
B
,
Lee
SJ
,
Oh
KB
,
Kim
KH
, et al
Inhibitory effects of costunolide isolated from laurus nobilis on IgE-induced degranulation of mast cell-like RBL-2H3 cells and the growth of Y16 pro-B cells
.
Phytother Res
2011
Jun 14. [Epub ahead of print]
.
186.
Liu
CY
,
Chang
HS
,
Chen
IS
,
Chen
CJ
,
Hsu
ML
,
Fu
SL
, et al
Costunolide causes mitotic arrest and enhances radiosensitivity in human hepatocellular carcinoma cells
.
Radiat Oncol
2011
;
6
:
56
.
187.
Cheng
G
,
Xie
L
. 
Parthenolide induces apoptosis and cell cycle arrest of human 5637 bladder cancer cells in vitro
.
Molecules
2011
;
16
:
6758
68
.
188.
Czyz
M
,
Koprowska
K
,
Sztiller-Sikorska
M
. 
Parthenolide reduces the frequency of ABCB5-positive cells and clonogenic capacity of melanoma cells from anchorage independent melanospheres
.
Cancer Biol Ther
2013
;
14
:
135
45
.
189.
Czyz
M
,
Lesiak-Mieczkowska
K
,
Koprowska
K
,
Szulawska-Mroczek
A
,
Wozniak
M
. 
Cell context-dependent activities of parthenolide in primary and metastatic melanoma cells
.
Br J Pharmacol
2010
;
160
:
1144
57
.
190.
Li
Y
,
Zhang
Y
,
Fu
M
,
Yao
Q
,
Zhuo
H
,
Lu
Q
, et al
Parthenolide induces apoptosis and lytic cytotoxicity in Epstein-Barr virus-positive Burkitt lymphoma
.
Mol Med Rep
2012
;
6
:
477
82
.
191.
Liu
JW
,
Cai
MX
,
Xin
Y
,
Wu
QS
,
Ma
J
,
Yang
P
, et al
Parthenolide induces proliferation inhibition and apoptosis of pancreatic cancer cells in vitro
.
J Exp Clin Cancer Res
2010
;
29
:
108
.
192.
Nakabayashi
H
,
Shimizu
K
. 
Involvement of Akt/NF-kappaB pathway in antitumor effects of parthenolide on glioblastoma cells in vitro and in vivo
.
BMC Cancer
2012
;
12
:
453
.
193.
Shanmugam
R
,
Kusumanchi
P
,
Appaiah
H
,
Cheng
L
,
Crooks
P
,
Neelakantan
S
, et al
A water soluble parthenolide analog suppresses in vivo tumor growth of two tobacco-associated cancers, lung and bladder cancer, by targeting NF-kappaB and generating reactive oxygen species
.
Int J Cancer
2011
;
128
:
2481
94
.
194.
Sohma
I
,
Fujiwara
Y
,
Sugita
Y
,
Yoshioka
A
,
Shirakawa
M
,
Moon
JH
, et al
Parthenolide, an NF-kappaB inhibitor, suppresses tumor growth and enhances response to chemotherapy in gastric cancer
.
Cancer Genomics Proteomics
2011
;
8
:
39
47
.
195.
Sun
Y
,
St Clair
DK
,
Xu
Y
,
Crooks
PA
,
St Clair
WH
. 
A NADPH oxidase-dependent redox signaling pathway mediates the selective radiosensitization effect of parthenolide in prostate cancer cells
.
Cancer Res
2010
;
70
:
2880
90
.
196.
Watson
C
,
Miller
DA
,
Chin-Sinex
H
,
Losch
A
,
Hughes
W
,
Sweeney
C
, et al
Suppression of NF-kappaB activity by parthenolide induces X-ray sensitivity through inhibition of split-dose repair in TP53 null prostate cancer cells
.
Radiat Res
2009
;
171
:
389
96
.
197.
Wyrebska
A
,
Gach
K
,
Szemraj
J
,
Szewczyk
K
,
Hrabec
E
,
Koszuk
J
, et al
Comparison of anti-invasive activity of parthenolide and 3-isopropyl-2-methyl-4-methyleneisoxazolidin-5-one (MZ-6)–a new compound with alpha-methylene-gamma-lactone motif–on two breast cancer cell lines
.
Chem Biol Drug Des
2012
;
79
:
112
20
.
198.
Wyrebska
A
,
Szymanski
J
,
Gach
K
,
Piekielna
J
,
Koszuk
J
,
Janecki
T
, et al
Apoptosis-mediated cytotoxic effects of parthenolide and the new synthetic analog MZ-6 on two breast cancer cell lines
.
Mol Biol Rep
2013
;
40
:
1655
63
.
199.
Zhang
D
,
Qiu
L
,
Jin
X
,
Guo
Z
,
Guo
C
. 
Nuclear factor-kappaB inhibition by parthenolide potentiates the efficacy of Taxol in non-small cell lung cancer in vitro and in vivo
.
Mol Cancer Res
2009
;
7
:
1139
49
.
200.
Zhao
LJ
,
Xu
YH
,
Li
Y
. 
Effect of parthenolide on proliferation and apoptosis in gastric cancer cell line SGC7901
.
J Dig Dis
2009
;
10
:
172
80
.
201.
Zunino
SJ
,
Storms
DH
,
Ducore
JM
. 
Parthenolide treatment activates stress signaling proteins in high-risk acute lymphoblastic leukemia cells with chromosomal translocation t(4;11)
.
Int J Oncol
2010
;
37
:
1307
13
.
202.
Hou
L
,
Xu
B
,
Guo
W
,
Ran
FX
,
Liu
JT
,
Yuan
X
, et al
Pseudolaric acid B inhibits inducible cyclooxygenase-2 expression via downregulation of the NF-kappaB pathway in HT-29 cells
.
J Cancer Res Clin Oncol
2012
Feb 8. [Epub ahead of print]
.
203.
Khan
M
,
Zheng
B
,
Yi
F
,
Rasul
A
,
Gu
Z
,
Li
T
, et al
Pseudolaric Acid B induces caspase-dependent and caspase-independent apoptosis in u87 glioblastoma cells
.
Evid Based Complement Alternat Med
2012
;
2012
:
957568
.
204.
Ma
G
,
Chong
L
,
Li
XC
,
Khan
IA
,
Walker
LA
,
Khan
SI
. 
Selective inhibition of human leukemia cell growth and induction of cell cycle arrest and apoptosis by pseudolaric acid B
.
J Cancer Res Clin Oncol
2010
;
136
:
1333
40
.
205.
Meng
AG
,
Jiang
LL
. 
Induction of G2/M arrest by pseudolaric acid B is mediated by activation of the ATM signaling pathway
.
Acta Pharmacol Sin
2009
;
30
:
442
50
.
206.
Meng
AG
,
Jiang
LL
. 
Pseudolaric acid B-induced apoptosis through p53-dependent pathway in human gastric carcinoma cells
.
J Asian Nat Prod Res
2009
;
11
:
142
52
.
207.
Qi
M
,
Yao
G
,
Fan
S
,
Cheng
W
,
Tashiro
S
,
Onodera
S
, et al
Pseudolaric acid B induces mitotic catastrophe followed by apoptotic cell death in murine fibrosarcoma L929 cells
.
Eur J Pharmacol
2012
;
683
:
16
26
.
208.
Sarkar
T
,
Nguyen
TL
,
Su
ZW
,
Hao
J
,
Bai
R
,
Gussio
R
, et al
Interaction of pseudolaric acid B with the colchicine site of tubulin
.
Biochem Pharmacol
2012
;
84
:
444
50
.
209.
Tong
J
,
Yin
S
,
Dong
Y
,
Guo
X
,
Fan
L
,
Ye
M
, et al
Pseudolaric acid B induces caspase-dependent apoptosis and autophagic cell death in prostate cancer cells
.
Phytother Res
2012
;
27
:
885
91
.
210.
Yu
JH
,
Cui
Q
,
Jiang
YY
,
Yang
W
,
Tashiro
S
,
Onodera
S
, et al
Pseudolaric acid B induces apoptosis, senescence, and mitotic arrest in human breast cancer MCF-7
.
Acta Pharmacol Sin
2007
;
28
:
1975
83
.
211.
Bu
HQ
,
Luo
J
,
Chen
H
,
Zhang
JH
,
Li
HH
,
Guo
HC
, et al
Oridonin enhances antitumor activity of gemcitabine in pancreatic cancer through MAPK-p38 signaling pathway
.
Int J Oncol
2012
;
41
:
949
58
.
212.
Chen
G
,
Wang
K
,
Yang
BY
,
Tang
B
,
Chen
JX
,
Hua
ZC
. 
Synergistic antitumor activity of oridonin and arsenic trioxide on hepatocellular carcinoma cells
.
Int J Oncol
2012
;
40
:
139
47
.
213.
Chen
JH
,
Wang
SB
,
Li
EM
,
Chen
LM
,
Yuan
SJ
,
Wang
RL
, et al
[Inhibitory effect of Oridonin injection on heterotransplanted gastric adenocarcinoma in nude mice and its mechanism]
.
Zhonghua Zhong Liu Za Zhi
2008
;
30
:
89
92
.
214.
Cheng
Y
,
Qiu
F
,
Ikejima
T
. 
Molecular mechanisms of oridonin-induced apoptosis and autophagy in murine fibrosarcoma L929 cells
.
Autophagy
2009
;
5
:
430
1
.
215.
Cheng
Y
,
Qiu
F
,
Ye
YC
,
Tashiro
S
,
Onodera
S
,
Ikejima
T
. 
Oridonin induces G2/M arrest and apoptosis via activating ERK-p53 apoptotic pathway and inhibiting PTK-Ras-Raf-JNK survival pathway in murine fibrosarcoma L929 cells
.
Arch Biochem Biophys
2009
;
490
:
70
5
.
216.
Gao
FH
,
Hu
XH
,
Li
W
,
Liu
H
,
Zhang
YJ
,
Guo
ZY
, et al
Oridonin induces apoptosis and senescence in colorectal cancer cells by increasing histone hyperacetylation and regulation of p16, p21, p27 and c-myc
.
BMC Cancer
2010
;
10
:
610
.
217.
Guo
Y
,
Shan
Q
,
Gong
Y
,
Lin
J
,
Yang
X
,
Zhou
R
. 
Oridonin in combination with imatinib exerts synergetic anti-leukemia effect in Ph+ acute lymphoblastic leukemia cells in vitro by inhibiting activation of LYN/mTOR signaling pathway
.
Cancer Biol Ther
2012
;
13
:
1244
54
.
218.
Harris
ES
,
Cao
S
,
Schoville
SD
,
Dong
C
,
Wang
W
,
Jian
Z
, et al
Selection for high oridonin yield in the Chinese medicinal plant Isodon (Lamiaceae) using a combined phylogenetics and population genetics approach
.
PLoS ONE
2012
;
7
:
e50753
.
219.
Huang
J
,
Wu
L
,
Tashiro
S
,
Onodera
S
,
Ikejima
T
. 
Reactive oxygen species mediate oridonin-induced HepG2 apoptosis through p53, MAPK, and mitochondrial signaling pathways
.
J Pharmacol Sci
2008
;
107
:
370
9
.
220.
Kwan
HY
,
Yang
Z
,
Fong
WF
,
Hu
YM
,
Yu
ZL
,
Hsiao
WL
. 
The anticancer effect of oridonin is mediated by fatty acid synthase suppression in human colorectal cancer cells
.
J Gastroenterol
2013
;
48
:
182
92
.
221.
Li
CY
,
Wang
EQ
,
Cheng
Y
,
Bao
JK
. 
Oridonin: An active diterpenoid targeting cell cycle arrest, apoptotic and autophagic pathways for cancer therapeutics
.
Int J Biochem Cell Biol
2011
;
43
:
701
4
.
222.
Li
D
,
Wu
LJ
,
Tashiro
S
,
Onodera
S
,
Ikejima
T
. 
Oridonin induces human epidermoid carcinoma A431 cell apoptosis through tyrosine kinase and mitochondrial pathway
.
J Asian Nat Prod Res
2008
;
10
:
77
87
.
223.
Li
X
,
Wang
J
,
Ye
Z
,
Li
JC
. 
Oridonin up-regulates expression of P21 and induces autophagy and apoptosis in human prostate cancer cells
.
Int J Biol Sci
2012
;
8
:
901
12
.
224.
Liu
Z
,
Ouyang
L
,
Peng
H
,
Zhang
WZ
. 
Oridonin: targeting programmed cell death pathways as an anti-tumour agent
.
Cell Prolif
2012
;
45
:
499
507
.
225.
Lou
H
,
Gao
L
,
Wei
X
,
Zhang
Z
,
Zheng
D
,
Zhang
D
, et al
Oridonin nanosuspension enhances anti-tumor efficacy in SMMC-7721 cells and H22 tumor bearing mice
.
Colloids Surf B Biointerfaces
2011
;
87
:
319
25
.
226.
Qi
X
,
Zhang
D
,
Xu
X
,
Feng
F
,
Ren
G
,
Chu
Q
, et al
Oridonin nanosuspension was more effective than free oridonin on G2/M cell cycle arrest and apoptosis in the human pancreatic cancer PANC-1 cell line
.
Int J Nanomedicine
2012
;
7
:
1793
804
.
227.
Sun
KW
,
Ma
YY
,
Guan
TP
,
Xia
YJ
,
Shao
CM
,
Chen
LG
, et al
Oridonin induces apoptosis in gastric cancer through Apaf-1, cytochrome c and caspase-3 signaling pathway
.
World J Gastroenterol
2012
;
18
:
7166
74
.
228.
Wang
S
,
Zhong
Z
,
Wan
J
,
Tan
W
,
Wu
G
,
Chen
M
, et al
Oridonin induces apoptosis, inhibits migration and invasion on highly-metastatic human breast cancer cells
.
Am J Chin Med
2013
;
41
:
177
96
.
229.
Benes
P
,
Alexova
P
,
Knopfova
L
,
Spanova
A
,
Smarda
J
. 
Redox state alters anti-cancer effects of wedelolactone
.
Environ Mol Mutagen
2012
;
53
:
515
24
.
230.
Benes
P
,
Knopfova
L
,
Trcka
F
,
Nemajerova
A
,
Pinheiro
D
,
Soucek
K
, et al
Inhibition of topoisomerase IIalpha: novel function of wedelolactone
.
Cancer Lett
2011
;
303
:
29
38
.
231.
Bharadwaj
U
,
Marin-Muller
C
,
Li
M
,
Chen
C
,
Yao
Q
. 
Mesothelin confers pancreatic cancer cell resistance to TNF-alpha-induced apoptosis through Akt/PI3K/NF-kappaB activation and IL-6/Mcl-1 overexpression
.
Mol Cancer
2011
;
10
:
106
.
232.
Bharadwaj
U
,
Marin-Muller
C
,
Li
M
,
Chen
C
,
Yao
Q
. 
Mesothelin overexpression promotes autocrine IL-6/sIL-6R trans-signaling to stimulate pancreatic cancer cell proliferation
.
Carcinogenesis
2011
;
32
:
1013
24
.
233.
Hammadi
A
,
Billard
C
,
Faussat
AM
,
Kolb
JP
. 
Stimulation of iNOS expression and apoptosis resistance in B-cell chronic lymphocytic leukemia (B-CLL) cells through engagement of Toll-like receptor 7 (TLR-7) and NF-kappaB activation
.
Nitric Oxide
2008
;
19
:
138
45
.
234.
Kobori
M
,
Yang
Z
,
Gong
D
,
Heissmeyer
V
,
Zhu
H
,
Jung
YK
, et al
Wedelolactone suppresses LPS-induced caspase-11 expression by directly inhibiting the IKK complex
.
Cell Death Differ
2004
;
11
:
123
30
.
235.
Lim
S
,
Jang
HJ
,
Park
EH
,
Kim
JK
,
Kim
JM
,
Kim
EK
, et al
Wedelolactone inhibits adipogenesis through the ERK pathway in human adipose tissue-derived mesenchymal stem cells
.
J Cell Biochem
2012
;
113
:
3436
45
.
236.
Tanabe
K
,
Nishimura
K
,
Dohi
S
,
Kozawa
O
. 
Mechanisms of interleukin-1beta-induced GDNF release from rat glioma cells
.
Brain Res
2009
;
1274
:
11
20
.
237.
Tsai
CH
,
Lin
FM
,
Yang
YC
,
Lee
MT
,
Cha
TL
,
Wu
GJ
, et al
Herbal extract of Wedelia chinensis attenuates androgen receptor activity and orthotopic growth of prostate cancer in nude mice
.
Clin Cancer Res
2009
;
15
:
5435
44
.
238.
Chao
DC
,
Lin
LJ
,
Hsiang
CY
,
Li
CC
,
Lo
HY
,
Liang
JA
, et al
Evodiamine inhibits 12-O-tetradecanoylphorbol-13-acetate-induced activator protein 1 transactivation and cell transformation in human hepatocytes
.
Phytother Res
2011
;
25
:
1018
23
.
239.
Chen
MC
,
Yu
CH
,
Wang
SW
,
Pu
HF
,
Kan
SF
,
Lin
LC
, et al
Anti-proliferative effects of evodiamine on human thyroid cancer cell line ARO
.
J Cell Biochem
2010
;
110
:
1495
503
.
240.
Jiang
J
,
Hu
C
. 
Evodiamine: a novel anti-cancer alkaloid from Evodia rutaecarpa
.
Molecules
2009
;
14
:
1852
9
.
241.
Pan
X
,
Hartley
JM
,
Hartley
JA
,
White
KN
,
Wang
Z
,
Bligh
SW
. 
Evodiamine, a dual catalytic inhibitor of type I and II topoisomerases, exhibits enhanced inhibition against camptothecin resistant cells
.
Phytomedicine
2012
;
19
:
618
24
.
242.
Rasul
A
,
Yu
B
,
Zhong
L
,
Khan
M
,
Yang
H
,
Ma
T
. 
Cytotoxic effect of evodiamine in SGC-7901 human gastric adenocarcinoma cells via simultaneous induction of apoptosis and autophagy
.
Oncol Rep
2012
;
27
:
1481
7
.
243.
Yang
J
,
Cai
X
,
Lu
W
,
Hu
C
,
Xu
X
,
Yu
Q
, et al
Evodiamine inhibits STAT3 signaling by inducing phosphatase shatterproof 1 in hepatocellular carcinoma cells
.
Cancer Lett
2013
;
328
:
243
51
.
244.
Zhang
C
,
Fan
X
,
Xu
X
,
Yang
X
,
Wang
X
,
Liang
HP
. 
Evodiamine induces caspase-dependent apoptosis and S phase arrest in human colon lovo cells
.
Anticancer Drugs
2010
;
21
:
766
76
.