Editor's Note: Cancer Prevention Research is dedicated to presenting leading-edge work in cancer prevention-related models of carcinogenesis. This minireview details the evolution and development of a mouse model of 4-nitroquinoline-1 oxide (4NQO)-induced oral carcinogenesis, thus extending publications on this model that appeared in the January and April 2009 issues of the journal.

Head-and-neck squamous cell carcinomas (HNSCC) mostly arise in the oral cavity, and represent the sixth most common cancer worldwide (1), resulting in nearly 11,000 deaths each year in the United States alone (2). Although alcohol and tobacco use, betel nut chewing, and human papillomavirus infection have long been recognized as the most prevalent risk factors (3, 4), most patients with HNSCCs are still diagnosed at advanced disease stages that often fail to respond to available therapies (3, 4). Indeed, <50% of patients with HNSCC survive >5 years after diagnosis (2). Advancing our understanding of the molecular mechanisms underlying HNSCC progression, however, may afford the opportunity to develop novel molecular-targeted strategies for HNSCC prevention and treatment.

HNSCC progression involves the acquisition of genetic and epigenetic alterations in oncogenes and tumor suppressors and involves the aberrant activity of molecular networks controlling cell growth, migration, and survival (35). Although some of the key molecular events contributing to HNSCC initiation and progression have been identified recently, translating these findings into the development of novel mechanism-based preventive and therapeutic approaches for HNSCC has been hampered by a paucity of appropriate animal models of oral carcinogenesis. To address this need, investigators have recently used genetically engineered mice to begin modeling HNSCC progression (68) and have initiated parallel efforts to recapitulate the tumor heterogeneity and complexity of the clinical setting by optimizing carcinogen-induced oral-specific carcinogenesis models in immunocompetent mice. As previously reviewed (9), the latter effort includes exposing experimental animals to chemical carcinogens such as coal tar, cigarette smoke, 20-methylcholanthrene, 9,10-dimethyl-1,2-benzanthracene, and 3,4-benzpyrene. Although 9,10-dimethyl-1,2-benzanthracene remains one of the most widely used chemical carcinogens, it is a potent irritant and may have limited use in studying early HNSCC lesions because it produces an inflammatory response, necrosis, and the appearance of granulation tissue when applied locally in the oral cavity (see ref. 9 and references therein). Addressing this limitation, early work revealed that the synthetic water-soluble chemical carcinogen 4-nitroquinoline-1 oxide (4NQO) is more effective for inducing oral carcinogenesis in rats compared with 9,10-dimethyl-1,2-benzanthracene and does not cause an extensive inflammatory response (see ref. 9 and references therein). Therefore, 4NQO was adapted as early as in the mid-1960s for the development of oral squamous cell carcinoma (SCC) in mice, the experimental animal most frequently used for carcinogenesis studies. Table 1 includes information on specific mouse strains, dose and duration of 4NQO exposure, route of administration, and length of observation, which should be useful in judging the best experimental system for investigating the molecular events contributing to oral cancer progression and for testing novel preventive and treatment strategies. We recommend that the reader also consult the original study reports (1037), many of which represent seminal contributions to this field.

Table 1.

A comprehensive list of studies using 4NQO as an oral carcinogen in mice, either by local (oral cavity brushing) or systemic (drinking water) delivery

YearAuthorsMouse backgroundDeliveryDoseCarcinogen administrationObservationLesions
1965 Fujino et al. (13) ddN Brushing* 2.5 mg/mL Once a day until death 25-80 wk OSCC 
1984 Steidler and Reade (28) CBA Brushing 5 mg/mL Thrice a week, 2-16 wk 50 wk Premalignant, OSCC 
1986 Steidler and Reade (29) CBA Brushing 5 mg/mL Thrice a week, 2-16 wk 50 wk Premalignant, OSCC 
1994 Hawkins et al. (18) CBA Brushing 5 mg/mL Thrice a week, 4-16 wk 49 wk Premalignant, OSCC 
1994 Yuan et al. (35) CBA Brushing 5 mg/mL Thrice a week, 4-16 wk 49 wk Premalignant, OSCC 
1997 Yuan et al. (36) CBA/J Brushing 5 mg/mL Thrice a week, 4-16 wk 24 wk OSCC 
1999 Ma et al. (24) CBA Brushing 5 mg/mL Thrice a week, 16 wk 28 wk Premalignant, OSCC 
1999 Ma et al. (25) CBA DW 10 μg/mL 16 wk Up to 44 wk Dysplasia 
1999 von Pressentin et al. (33) CD-2; (BALB/c × DBA/2)F1 (MutaMouse) DW 20-80 μg/mL Multiple schemes 6 wk Mutations 
2000 von Pressentin et al. (32) CD-2; (BALB/c × DBA/2)F1 (MutaMouse) DW 20 μg/mL 2 wk 4 wk Mutations, oral and aerodigestive tissues 
2001 Ishikawa et al. (21) CBA/C57BL/6 and CD-1 (XPA−/−, XPA+/−, XPA+/+) DW 10 μg/mL 50 wk 50 wk Premalignant lesions, OSCC 
2001 Ide et al. (20) CBA/C57BL/6 and CD-1 (XPA−/−, XPA +/−, XPA +/+) DW 10 μg/mL 50 wk 50 wk OSCC 
2002 Kim et al. (22) SENCAR Brushing 5 mg/mL Thrice a week, 28 wk 28 wk Premalignant lesions, OSCC 
2002 Guttenplan et al. (16) CD-2; (BALB/c × DBA/2)F1 (MutaMouse) DW 20 μg/mL 4 wk 6 wk Mutations 
2003 Ide et al. (19) C3H/HeN/C57BL/6/CBA (XPA−/− p53 +/−) DW 10 μg/mL 50 wk 50 wk OSCC 
2004 Gannot et al. (14) BALB/c Brushing 10 mg/mL 16 wk 24-32 wk OSCC 
2004 Tang et al. (31) CBA Brushing 5 mg/mL Thrice a week, 16 wk 8-16 wk OSCC, ESCC 
2004 Tang et al. (31) CBA DW 20, 50, 100 μg/mL 16 wk 8-16 wk OSCC, ESCC 
2004 Tang et al. (31) C57BL/6 DW 100 μg/mL 16 wk 8-16 wk OSCC, ESCC 
2006 Zhang et al. (37) FVB/J-BALB/c (p53Val135/WT) Brushing 5 mg/mL Thrice a week, 16 wk 48 wk OSCC, ESCC, forestomach SCC 
2006 Fong et al. (12) C57BL/6J, p53−/−, +/− DW 10-20 μg/mL 21 wk 21 wk OSCC, ESCC, forestomach SCC 
2006 Strati et al. (30) FVB/N (K14E6-E7) DW 10 μg/mL 16 wk 24 wk Premalignant lesions, OSCC 
2006 Gunji et al. (15) ICR/129Sv (Parp-1−/+ and Parp-1−/−) DW 10 μg/mL 32 wk 32 wk OSCC, ESCC, forestomach SCC 
2008 Miyamoto et al. (26) CB6F1-Tg-rasH2 DW 20 μg/mL 2-8 wk 24 wk Premalignant lesions, OSCC, ESCC 
2008 Young et al. (34) C57BL/6 DW 50 μg/mL 16 wk Up to 32 wk Premalignant lesions, OSCC 
2008 Korpi et al. (23) C57BL/6 (MMP-8 KO) Brushing 10 mg/mL Thrice a week, 12 wk 55 wk Premalignant lesions, OSCC 
2008 Dwivedi et al. (11) C57BL/6 Brushing 5 mg/mL Daily, 8 wk Up to 19 wk Hyperplasia, dysplasia 
2008 Schoop et al. (27) CBA Brushing 5 mg/mL Thrice a week, 16 wk Up to 40 wk OSCC 
2009 Czerninski et al. (10) C57BL/6 DW 50 μg/mL 16 wk 23 wk Premalignant lesions, OSCC 
2009 Hasina et al. (17) CBA DW 50, 100 μg/mL 8 or 16 wk Up to 24 wk Premalignant lesions, OSCC 
YearAuthorsMouse backgroundDeliveryDoseCarcinogen administrationObservationLesions
1965 Fujino et al. (13) ddN Brushing* 2.5 mg/mL Once a day until death 25-80 wk OSCC 
1984 Steidler and Reade (28) CBA Brushing 5 mg/mL Thrice a week, 2-16 wk 50 wk Premalignant, OSCC 
1986 Steidler and Reade (29) CBA Brushing 5 mg/mL Thrice a week, 2-16 wk 50 wk Premalignant, OSCC 
1994 Hawkins et al. (18) CBA Brushing 5 mg/mL Thrice a week, 4-16 wk 49 wk Premalignant, OSCC 
1994 Yuan et al. (35) CBA Brushing 5 mg/mL Thrice a week, 4-16 wk 49 wk Premalignant, OSCC 
1997 Yuan et al. (36) CBA/J Brushing 5 mg/mL Thrice a week, 4-16 wk 24 wk OSCC 
1999 Ma et al. (24) CBA Brushing 5 mg/mL Thrice a week, 16 wk 28 wk Premalignant, OSCC 
1999 Ma et al. (25) CBA DW 10 μg/mL 16 wk Up to 44 wk Dysplasia 
1999 von Pressentin et al. (33) CD-2; (BALB/c × DBA/2)F1 (MutaMouse) DW 20-80 μg/mL Multiple schemes 6 wk Mutations 
2000 von Pressentin et al. (32) CD-2; (BALB/c × DBA/2)F1 (MutaMouse) DW 20 μg/mL 2 wk 4 wk Mutations, oral and aerodigestive tissues 
2001 Ishikawa et al. (21) CBA/C57BL/6 and CD-1 (XPA−/−, XPA+/−, XPA+/+) DW 10 μg/mL 50 wk 50 wk Premalignant lesions, OSCC 
2001 Ide et al. (20) CBA/C57BL/6 and CD-1 (XPA−/−, XPA +/−, XPA +/+) DW 10 μg/mL 50 wk 50 wk OSCC 
2002 Kim et al. (22) SENCAR Brushing 5 mg/mL Thrice a week, 28 wk 28 wk Premalignant lesions, OSCC 
2002 Guttenplan et al. (16) CD-2; (BALB/c × DBA/2)F1 (MutaMouse) DW 20 μg/mL 4 wk 6 wk Mutations 
2003 Ide et al. (19) C3H/HeN/C57BL/6/CBA (XPA−/− p53 +/−) DW 10 μg/mL 50 wk 50 wk OSCC 
2004 Gannot et al. (14) BALB/c Brushing 10 mg/mL 16 wk 24-32 wk OSCC 
2004 Tang et al. (31) CBA Brushing 5 mg/mL Thrice a week, 16 wk 8-16 wk OSCC, ESCC 
2004 Tang et al. (31) CBA DW 20, 50, 100 μg/mL 16 wk 8-16 wk OSCC, ESCC 
2004 Tang et al. (31) C57BL/6 DW 100 μg/mL 16 wk 8-16 wk OSCC, ESCC 
2006 Zhang et al. (37) FVB/J-BALB/c (p53Val135/WT) Brushing 5 mg/mL Thrice a week, 16 wk 48 wk OSCC, ESCC, forestomach SCC 
2006 Fong et al. (12) C57BL/6J, p53−/−, +/− DW 10-20 μg/mL 21 wk 21 wk OSCC, ESCC, forestomach SCC 
2006 Strati et al. (30) FVB/N (K14E6-E7) DW 10 μg/mL 16 wk 24 wk Premalignant lesions, OSCC 
2006 Gunji et al. (15) ICR/129Sv (Parp-1−/+ and Parp-1−/−) DW 10 μg/mL 32 wk 32 wk OSCC, ESCC, forestomach SCC 
2008 Miyamoto et al. (26) CB6F1-Tg-rasH2 DW 20 μg/mL 2-8 wk 24 wk Premalignant lesions, OSCC, ESCC 
2008 Young et al. (34) C57BL/6 DW 50 μg/mL 16 wk Up to 32 wk Premalignant lesions, OSCC 
2008 Korpi et al. (23) C57BL/6 (MMP-8 KO) Brushing 10 mg/mL Thrice a week, 12 wk 55 wk Premalignant lesions, OSCC 
2008 Dwivedi et al. (11) C57BL/6 Brushing 5 mg/mL Daily, 8 wk Up to 19 wk Hyperplasia, dysplasia 
2008 Schoop et al. (27) CBA Brushing 5 mg/mL Thrice a week, 16 wk Up to 40 wk OSCC 
2009 Czerninski et al. (10) C57BL/6 DW 50 μg/mL 16 wk 23 wk Premalignant lesions, OSCC 
2009 Hasina et al. (17) CBA DW 50, 100 μg/mL 8 or 16 wk Up to 24 wk Premalignant lesions, OSCC 

Abbreviations: OSCC, oral SCC; DW, drinking water; ESCC, esophageal SCC.

*Brushing: local administration of the carcinogen in the oral cavity. The indicated dose reflects the stock solution. Total dose may vary based on the delivery device used. Local delivery usually results in oral lesions exclusively.

The first laboratory to compare drinking-water with tongue-brushing administration of 4NQO in different strains of wild-type mice and to use oral SCC as an end point.

Complete autopsies, malignant proliferations restricted to oral cancer lesions.

4NQO forms DNA adducts, causes adenosine for guanosine substitutions, and induces intracellular oxidative stress resulting in mutations and DNA strand breaks, all similar to the genetic alterations provoked by tobacco carcinogens, and so 4NQO serves as a surrogate for tobacco exposure (9, 38, 39). Oral-specific carcinogenesis can be achieved by the local delivery of this carcinogen, most often by labor-intensive procedures including brushing the hard palate, tongue, or gingiva with concentrated water solutions of 4NQO, which leads to the progressive acquisition of oral premalignant lesions and SCC (Table 1). Early analysis of the ability of low doses of 4NQO in drinking water to induce the appearance of dysplastic oral lesions and DNA mutations (20, 21, 25, 32, 33) led to the seminal demonstration by Tang et al. that prolonged exposure to higher doses of 4NQO in drinking water was sufficient to cause dysplastic lesions and frank SCCs in the tongue, oral mucosa, and esophagus of both C57BL/6 and CBA mice (31). The tested doses were 20, 50, and 100 μg/mL for 8 and 16 weeks in CBA mice, and 100 μg/mL for 16 weeks in C57BL/6 mice. This approach was found to be better than brushing in terms of ease of application and reproducibility, and 100 μg/mL of 4NQO in drinking water led to oral and esophageal lesions including SCCs in 100% of CBA or C57BL/6 mice (31), which is one of the most frequently used mouse strains for the analysis of genetically engineered alleles (40). 4NQO at the lower dose of 50 μg/mL in drinking water, however, caused minimal esophageal carcinogenesis (microcancer or papilloma) in C57BL/6 mice, whereas also producing the progressive appearance of tumoral lesions in the tongue and oral mucosa that were preceded by clearly identifiable premalignant events in 100% of these mice (10). This model helped reveal that a clinically relevant inhibitor of the mammalian target of rapamycin signaling pathway (rapamycin) represents a potential chemopreventive approach for halting progression in the oral cavity to HNSCC (10). Hasina et al. (17) administered 4NQO at a dose of 100 μg/mL in drinking water to CBA mice for 8 weeks, which caused elevated incidences of hyperkeratoses, dysplasias, and SCCs in the oral cavity and minimal morbidity and mortality over a period of 32 weeks. In these mice, the use of an antiangiogenic agent, ABT-510, reduced the overall incidence of SCC in the oral cavity, supporting the further evaluation of angiogenesis inhibitors in HNSCC prevention. These and prior 4NQO studies provide the basis for the future extended use of the 4NQO oral carcinogenesis model to explore novel chemopreventive approaches for HNSCC. Furthermore, the study of 4NQO in C57BL/6 mice (frequently used for genetic engineering) may facilitate future investigations of the molecular mechanisms underlying HNSCC initiation and progression in mice both treated with 4NQO and engineered to express modified versions of relevant genes.

An emerging body of data suggests that the progressive changes occurring in oral tumoral lesions of the 4NQO mouse model reflect changes that occur in human HNSCC. These shared changes include altered expression of differentiation markers such as keratins, decreased expression or acquisition of potential inactivating mutations in tumor suppressor genes such as p16 and p53, increased expression of the epidermal growth factor receptor and cyclooxygenase-2, enhanced angiogenesis, increased levels of vascular endothelial growth factor, and increased activity of the phosphoinositide-3-kinase–Akt–mammalian target of rapamycin pathway (9, 10, 17, 31). Therefore, the in-depth analysis of 4NQO-induced premalignant and malignant lesions may provide a framework for future explorations of the earliest molecular events in HNSCC progression. On the other hand, we expect that the information summarized in Table 1 may guide the selection of appropriate animal strains and 4NQO dose and exposure duration in developing mouse models that incorporate both genetic engineering and 4NQO-induced carcinogenesis for future studies of specific molecular events that contribute to HNSCC initiation and progression. For example, giving 4NQO to mice defective in a tumor suppressor gene relevant to HNSCC would be expected to lead to the development of either more lesions or earlier tumors; such a model might also better reflect the complexity and heterogeneity of clinical tumors (41). We expect that the use and further development of the 4NQO oral chemical carcinogenesis model in mice may ultimately expedite the evaluation of novel molecular-targeted chemopreventive strategies to halt HNSCC progression. These efforts may also facilitate the identification of new mechanism-based treatment options for patients with HNSCCs.

No potential conflicts of interest were disclosed.

1
Parkin
DM
,
Bray
F
,
Ferlay
J
,
Pisani
P
. 
Global cancer statistics, 2002
.
CA Cancer J Clin
2005
;
55
:
74
108
.
2
Jemal
A
,
Siegel
R
,
Ward
E
, et al
. 
Cancer statistics, 2008
.
CA Cancer J Clin
2008
;
58
:
71
96
.
3
Forastiere
A
,
Koch
W
,
Trotti
A
,
Sidransky
D
. 
Head and neck cancer
.
N Engl J Med
2001
;
345
:
1890
900
.
4
Mao
L
,
Hong
WK
,
Papadimitrakopoulou
VA
. 
Focus on head and neck cancer
.
Cancer Cell
2004
;
5
:
311
6
.
5
Molinolo
AA
,
Amornphimoltham
P
,
Squarize
CH
,
Castilho
RM
,
Patel
V
,
Gutkind
JS
. 
Dysregulated molecular networks in head and neck carcinogenesis
.
Oral Oncol
2008
. Sept. 18
[Epub ahead of print]
.
6
Lu
SL
,
Herrington
H
,
Wang
XJ
. 
Mouse models for human head and neck squamous cell carcinomas
.
Head Neck
2006
;
28
:
945
54
.
7
Vitale-Cross
L
,
Amornphimoltham
P
,
Fisher
G
,
Molinolo
AA
,
Gutkind
JS
. 
Conditional expression of K-ras in an epithelial compartment that includes the stem cells is sufficient to promote squamous cell carcinogenesis
.
Cancer Res
2004
;
64
:
8804
7
.
8
Caulin
C
,
Nguyen
T
,
Longley
MA
,
Zhou
Z
,
Wang
XJ
,
Roop
DR
. 
Inducible activation of oncogenic K-ras results in tumor formation in the oral cavity
.
Cancer Res
2004
;
64
:
5054
8
.
9
Kanojia
D
,
Vaidya
MM
. 
4-nitroquinoline-1-oxide induced experimental oral carcinogenesis
.
Oral Oncol
2006
;
42
:
655
67
.
10
Czerninski
R
,
Amornphimoltham
P
,
Patel
V
,
Molinolo
AA
,
Gutkind
JS
. 
Targeting mammalian target of rapamycin by rapamycin prevents tumor progression in an oral-specific chemical carcinogenesis model
.
Cancer Prev Res (Phila Pa)
2009
;
2
:
27
36
.
11
Dwivedi
PP
,
Mallya
S
,
Dongari-Bagtzoglou
A
. 
A novel immunocompetent murine model for Candida albicans-promoted oral epithelial dysplasia
.
Med Mycol
2008
;
1
11
.
12
Fong
LY
,
Jiang
Y
,
Farber
JL
. 
Zinc deficiency potentiates induction and progression of lingual and esophageal tumors in p53-deficient mice
.
Carcinogenesis
2006
;
27
:
1489
96
.
13
Fujino
H
,
Chino
T
,
Imai
T
. 
Experimental production of labial and lingual carcinoma by local application of 4-nitroquinoline N-oxide
.
J Natl Cancer Inst
1965
;
35
:
907
18
.
14
Gannot
G
,
Buchner
A
,
Keisari
Y
. 
Interaction between the immune system and tongue squamous cell carcinoma induced by 4-nitroquinoline N-oxide in mice
.
Oral Oncol
2004
;
40
:
287
97
.
15
Gunji
A
,
Uemura
A
,
Tsutsumi
M
, et al
. 
Parp-1 deficiency does not increase the frequency of tumors in the oral cavity and esophagus of ICR/129Sv mice by 4-nitroquinoline 1-oxide, a carcinogen producing bulky adducts
.
Cancer Lett
2006
;
241
:
87
92
.
16
Guttenplan
JB
,
Kosinska
W
,
von Pressentin
MM
,
Rosa
J
,
El-Bayoumy
K
. 
Effects of 1,4-phenylenebis(methylene)selenocyanate (p-XSC) and vitamin E on 4-nitroquinoline-N-oxide (4-NQO)-induced mutagenesis in lacZ mouse upper aerodigestive tissue
.
Mutat Res
2002
;
518
:
85
93
.
17
Hasina
R
,
Martin
LE
,
Kasza
K
,
Jones
CL
,
Jalil
A
,
Lingen
MW
. 
ABT-510 is an effective chemopreventive agent in the mouse 4-NQO model of oral carcinogenesis
.
Cancer Prev Res (Phila Pa)
2009
;
2
:
385
93
.
18
Hawkins
BL
,
Heniford
BW
,
Ackermann
DM
,
Leonberger
M
,
Martinez
SA
,
Hendler
FJ
. 
4NQO carcinogenesis: a mouse model of oral cavity squamous cell carcinoma
.
Head Neck
1994
;
16
:
424
32
.
19
Ide
F
,
Kitada
M
,
Sakashita
H
,
Kusama
K
,
Tanaka
K
,
Ishikawa
T
. 
p53 haploinsufficiency profoundly accelerates the onset of tongue tumors in mice lacking the xeroderma pigmentosum group A gene
.
Am J Pathol
2003
;
163
:
1729
33
.
20
Ide
F
,
Oda
H
,
Nakatsuru
Y
, et al
. 
Xeroderma pigmentosum group A gene action as a protection factor against 4-nitroquinoline 1-oxide-induced tongue carcinogenesis
.
Carcinogenesis
2001
;
22
:
567
72
.
21
Ishikawa
T
,
Ide
F
,
Qin
X
, et al
. 
Importance of DNA repair in carcinogenesis: evidence from transgenic and gene targeting studies
.
Mutat Res
2001
;
477
:
41
9
.
22
Kim
TW
,
Chen
Q
,
Shen
X
, et al
. 
Oral mucosal carcinogenesis in SENCAR mice
.
Anticancer Res
2002
;
22
:
2733
40
.
23
Korpi
JT
,
Kervinen
V
,
Maklin
H
, et al
. 
Collagenase-2 (matrix metalloproteinase-8) plays a protective role in tongue cancer
.
Br J Cancer
2008
;
98
:
766
75
.
24
Ma
G
,
Ikeda
H
,
Inokuchi
T
,
Sano
K
. 
Effect of photodynamic therapy using 5-aminolevulinic acid on 4-nitroquinoline-1-oxide-induced premalignant and malignant lesions of mouse tongue
.
Oral Oncol
1999
;
35
:
120
4
.
25
Ma
G
,
Sano
K
,
Ikeda
H
,
Inokuchi
T
. 
Promotional effects of CO(2) laser and scalpel incision on 4-NQO-induced premalignant lesions of mouse tongue
.
Lasers Surg Med
1999
;
25
:
207
12
.
26
Miyamoto
S
,
Yasui
Y
,
Kim
M
, et al
. 
A novel rasH2 mouse carcinogenesis model that is highly susceptible to 4-NQO-induced tongue and esophageal carcinogenesis is useful for preclinical chemoprevention studies
.
Carcinogenesis
2008
;
29
:
418
26
.
27
Schoop
RA
,
Baatenburg de Jong
RJ
,
Noteborn
MH
. 
Apoptin induces apoptosis in an oral cancer mouse model
.
Cancer Biol Ther
2008
;
7
:
1368
73
.
28
Steidler
NE
,
Reade
PC
. 
Experimental induction of oral squamous cell carcinomas in mice with 4-nitroquinolone-1-oxide
.
Oral Surg Oral Med Oral Pathol
1984
;
57
:
524
31
.
29
Steidler
NE
,
Reade
PC
. 
Initiation and promotion of experimental oral mucosal carcinogenesis in mice
.
J Oral Pathol
1986
;
15
:
43
7
.
30
Strati
K
,
Pitot
HC
,
Lambert
PF
. 
Identification of biomarkers that distinguish human papillomavirus (HPV)-positive versus HPV-negative head and neck cancers in a mouse model
.
Proc Natl Acad Sci U S A
2006
;
103
:
14152
7
.
31
Tang
XH
,
Knudsen
B
,
Bemis
D
,
Tickoo
S
,
Gudas
LJ
. 
Oral cavity and esophageal carcinogenesis modeled in carcinogen-treated mice
.
Clin Cancer Res
2004
;
10
:
301
13
.
32
von Pressentin
MM
,
El-Bayoumy
K
,
Guttenplan
JB
. 
Mutagenic activity of 4-nitroquinoline-N-oxide in upper aerodigestive tissue in lacZ mice (MutaMouse) and the effects of 1, 4-phenylenebis(methylene)selenocyanate
.
Mutat Res
2000
;
466
:
71
8
.
33
von Pressentin
MM
,
Kosinska
W
,
Guttenplan
JB
. 
Mutagenesis induced by oral carcinogens in lacZ mouse (MutaMouse) tongue and other oral tissues
.
Carcinogenesis
1999
;
20
:
2167
70
.
34
Young
MR
. 
Use of carcinogen-induced premalignant oral lesions in a dendritic cell-based vaccine to stimulate immune reactivity against both premalignant oral lesions and oral cancer
.
J Immunother
2008
;
31
:
148
56
.
35
Yuan
B
,
Heniford
BW
,
Ackermann
DM
,
Hawkins
BL
,
Hendler
FJ
. 
Harvey ras (H-ras) point mutations are induced by 4-nitroquinoline-1-oxide in murine oral squamous epithelia, while squamous cell carcinomas and loss of heterozygosity occur without additional exposure
.
Cancer Res
1994
;
54
:
5310
7
.
36
Yuan
B
,
Oechsli
MN
,
Hendler
FJ
. 
A region within murine chromosome 7F4, syntenic to the human 11q13 amplicon, is frequently amplified in 4NQO-induced oral cavity tumors
.
Oncogene
1997
;
15
:
1161
70
.
37
Zhang
Z
,
Wang
Y
,
Yao
R
,
Li
J
,
Lubet
RA
,
You
M
. 
p53 Transgenic mice are highly susceptible to 4-nitroquinoline-1-oxide-induced oral cancer
.
Mol Cancer Res
2006
;
4
:
401
10
.
38
Ikenaga
M
,
Ishii
Y
,
Tada
M
,
Kakunaga
T
,
Takebe
H
. 
Excision-repair of 4-nitroquinolin-1-oxide damage responsible for killing, mutation, and cancer
.
Basic Life Sci
1975
;
5B
:
763
71
.
39
Kim
MM
,
Glazer
CA
,
Mambo
E
, et al
. 
Head and neck cancer cell lines exhibit differential mitochondrial repair deficiency in response to 4NQO
.
Oral Oncol
2006
;
42
:
201
7
.
40
Seong
E
,
Saunders
TL
,
Stewart
CL
,
Burmeister
M
. 
To knockout in 129 or in C57BL/6: that is the question
.
Trends Genet
2004
;
20
:
59
62
.
41
Wong
KK
. 
Oral-specific chemical carcinogenesis in mice: an exciting model for cancer prevention and therapy
.
Cancer Prev Res (Phila Pa)
2009
;
2
:
10
3
.