Developing novel cancer prevention medication strategies is important for reducing mortality. Identification of common genetic variants associated with cancer risk suggests the potential to leverage these discoveries to define causal targets for cancer interception. Although each risk variant confers small increases in risk, researchers propose that blocking those that produce causal carcinogenic effects might have large impacts on cancer prevention. While a promising concept, we describe potential hurdles that may need to be scaled to reach this goal, including: (i) understanding the complexity of risk; (ii) achieving statistical power in studies with binary outcomes (cancer development: yes or no); (iii) characterization of cancer precursors; (iv) heterogeneity of cancer subtypes and the populations in which these diseases occur; (v) impact of static genetic markers across complex events of the life course; (vi) defining gene–gene and gene–environment interactions and (vii) demonstrating functional effects of markers in human populations. We assess short-term prospects for this research against the backdrop of these challenges and the potential to prevent cancer through other means.

See related commentary by Peters and Tomlinson, p. 7

You do not currently have access to this content.