Cetuximab is a monoclonal antibody to the EGFR that induces antibody-dependent cell cytotoxicity (ADCC) through Fcγ receptors on immune cells. Although SNPs in genes encoding Fcγ receptors are functionally relevant to cetuximab-mediated ADCC in colorectal cancer, a direct correlation between in vitro ADCC and clinical response to cetuximab is not defined. We therefore enrolled 96 consecutive metastatic colorectal cancer (mCRC) patients at diagnosis in a study that assessed FcγR status and cetuximab-mediated ADCC. Patients carrying the FcγRIIa H alleles 131H/H and 131H/R had significantly higher ADCC compared with patients with the 131R/R alleles (P = 0.013). Patients carrying FcγRIIIa genotypes with the V alleles 158V/V and 158V/F displayed higher ADCC compared with patients carrying the 158F/F genotype (P = 0.001). Progression-free survival of patients with an FcγRIIIa 158V allele was significantly longer compared with patients carrying 158F/F (P = 0.05), whereas no significant difference was observed for overall survival. Twenty-eight of 50 mCRC patients with wild-type KRAS received cetuximab. The average ADCC-mediated killing was 30% of assay targets for patients who experienced cetuximab complete or partial response, 21% in patients with stable disease and 9% in patients with progressive disease. To characterize basal natural killer (NK) activity, cytotoxicity was evaluated in 39 of 96 mCRC patients. Patients who responded to first-line treatment had higher NK-cell cytotoxicity. Thus, although limited to this cohort of patients, in vitro cetuximab-mediated ADCC correlated with FcγR polymorphisms and predicted cetuximab responsiveness. Cancer Immunol Res; 4(4); 366–74. ©2016 AACR.

Cetuximab (Erbitux; Merck) is a chimeric IgG1 monoclonal antibody with high affinity for the EGFR. It has now been approved in combination with chemotherapy as first- and second-line therapy in metastatic colorectal cancer (mCRC) patients with the wild-type (WT) version of the oncogene KRAS (1–3), and in monotherapy as a third-line treatment (4). Its principal mechanism of action is inhibition of EFGR signaling, resulting in reduced cell proliferation, cell survival, and angiogenesis. Also, cetuximab may induce antibody-dependent cell cytotoxicity (ADCC) by recruitment of immune effector cells (5–13) Allelic variation in the FcγRIIA and FcγRIIIa genes [FcγRIIa-H131R (rs1801274) and FcγRIIIa-V158F (rs396991), respectively] is reported to affect ADCC effectiveness (9, 14, 15), although the prognostic usefulness of FcγRIIa and IIIa genotypes is still controversial (16). Bibeau and colleagues showed that patients treated with cetuximab and irinotecan that carry FcγRIIa-131H/H and/or FcγIIIa-158V/V genotypes have longer progression-free survival (PFS) compared with patients carrying 131R and 158F alleles (5.5 vs 3.0 months; P = 0.005) independent of KRAS status (17). In addition, in mCRC patients with mutations downstream of the EGFR (such as mutated KRAS), those harboring FcγRIIa H/H alleles had a higher disease control rate than alternative genotypes (67% vs. 33%, P = 0.017). By multivariate analysis, FcγRIIa-131H/H was significantly correlated with disease control rate (P = 0.008). These data suggest that the mechanism of cetuximab effectiveness in KRAS-mutated patients is in part immune based (18–20). However, conflicting evidence has been reported on these issues (21, 22). Negri and colleagues found that patients with the FcγRIIIa-158V/V genotype have a significantly higher cetuximab-mediated ADCC, but could not establish a correlation between FcγR polymorphisms and response rate or time to progression after cetuximab-based therapy (23). As previously demonstrated, FcγRIIIa polymorphisms were significantly associated with response to anti–EGFR-based therapy in patients with KRAS-WT tumors; prognosis was unfavorable for patients carrying the FcγRIIIa-158F/F genotype, whereas prognosis was not affected by FcγRIIa polymorphisms (24). Natural killer (NK) cells exert an antibody-independent cytotoxic effect against cancer cells through NK receptors, including NKG2D, and killer inhibitory receptors (KIR; refs. 25–28). NKG2D is a receptor for different activating ligands overexpressed on cancer cells, whereas KIRs recognize MHC class I molecules; NK cells are also activated by the decrease in MHC class I molecules reported on cancer cells. These two mechanisms activate NK cells against tumor cells. In colorectal cancer, an extensive intratumoral infiltration of NK cells has been associated with a better prognosis (29). To investigate the predictive factors of clinical response in primary diagnosed mCRC, we performed a prospective evaluation of basal NK activity and in vitro cetuximab-mediated ADCC versus FcγRIIa-H131R and FcγRIIIa-V158F polymorphisms.

Patients

Ninety-six consecutive mCRC patients referred to the Division of Abdominal Medical Oncology of the National Cancer Institute (Naples, Italy) were enrolled into the study. Patient characteristics are shown in Table 1. Informed consent from each patient was sought. The research protocol number 52/09 was approved by the Human Ethical Committee of our institute. All patients underwent sequential standard chemotherapy and/or biologic therapies (bevacizumab, cetuximab, and panitumumab). Tumor response was evaluated every 3 months with computerized tomography scan and carcinoembryonic antigen according to the RECIST criteria and classified as complete response, partial response, stable disease, and progressive disease. The overall response rate was defined as complete response + partial response.

Table 1.

Patient characteristics (N = 96)

Sex 
Male 55 (57%) 
Female 41 (43%) 
Age, years 
Median 62 
Range (28–81) 
Primary tumor location 
Colon 70 (73%) 
Rectum 26 (27%) 
Number of metastatic sites 
74 (77%) 
17 (18%) 
>2 5 (5%) 
Pattern of metastatic disease 
Liver 68 (63%) 
Lung 24 (22%) 
Bone 3 (3%) 
Peritoneum 6 (6%) 
Other 6 (6%) 
KRAS status 
WT 50 (52%) 
MUT 43 (45%) 
Missing 3 (3%) 
First-line therapy 
CT 17 (18%) 
CT + anti-VEGF 69 (72%) 
CT + anti-EGFR 10 (10%) 
Response rate to first line 
CR 8 (8%) 
PR 32 (33%) 
SD 43 (45%) 
PD 8 (8%) 
Missing 5 (5%) 
Sex 
Male 55 (57%) 
Female 41 (43%) 
Age, years 
Median 62 
Range (28–81) 
Primary tumor location 
Colon 70 (73%) 
Rectum 26 (27%) 
Number of metastatic sites 
74 (77%) 
17 (18%) 
>2 5 (5%) 
Pattern of metastatic disease 
Liver 68 (63%) 
Lung 24 (22%) 
Bone 3 (3%) 
Peritoneum 6 (6%) 
Other 6 (6%) 
KRAS status 
WT 50 (52%) 
MUT 43 (45%) 
Missing 3 (3%) 
First-line therapy 
CT 17 (18%) 
CT + anti-VEGF 69 (72%) 
CT + anti-EGFR 10 (10%) 
Response rate to first line 
CR 8 (8%) 
PR 32 (33%) 
SD 43 (45%) 
PD 8 (8%) 
Missing 5 (5%) 

Abbreviations: CR, complete response; CT; chemotherapy; MUT, mutant; PD, progressive disease; PR, partial response; SD, stable disease.

Cell culture

EGFR-expressing cells; HT29, a colon cancer cell line; and K562, an erythroleukemia cell line, were obtained from the National Cancer Institute's Developmental Therapeutics program (NCI DTP) approximately in 2009. Cell lines were grown in complete RPMI-1640 (BioWhittaker; Lonza) medium with the addition of 10% heat-inactivated FBS, 1% l-glutamine, and penicillin/streptomycin and cultured at 37°C in 5% CO2 humidified atmosphere. Cell line identities were confirmed by short tandem repeat DNA typing at IDEXX BioResearch.

Human mononuclear cell cultures

Peripheral blood mononuclear cells (PBMC) from 96 mCRC patients were isolated at diagnosis by Ficoll-Paque Plus gradient centrifugation (GE Healthcare). Lymphokine-activated killer (LAK) cells were generated by culturing PBMCs in complete RPMI-1640 enriched with human IL2 (10 ng/mL) for 18 hours.

Characterization of FcγR polymorphisms

Genotypes of 148 unrelated healthy donors and 96 mCRC patients were evaluated. Genomic DNA was extracted from PBMCs using a Qiagen DNA extraction kit (Qiagen) according to the manufacturer's recommendations. Genotyping of FcγRIIa-H131R and the FcγRIIIa-V158F was done on genomic DNA by PCR in both forward and reverse directions. The primers to analyze FcγRIIa-H131R polymorphisms are forward 5′-GGAGAAACCATCATGCTGAG-3′ and reverse primer 5′-CAATTTTGCTGCTATGGGC-3′. The annealing temperature was 56°C. Purified PCR products (277 bp) were sequenced using the Big Dye terminators version 3.1 cycle sequencing Kit (Applied Biosystems) and the 3130 Genetic Analyzer (Applied Biosystems; refs. 30, 31).

To analyze the FcγRIIIa genomic sequence, the part of exon 4 that contains the polymorphic site at nt559 was amplified by PCR using the M13 forward primer 5′-TGTAAAACGACGGCCAG TTCATCATAATTCTGTCTTCT-3′ and the M13 reverse primer 5′-CAGGAAACAGCTATGA CCCTTGAGTGATGGTGATGTTCA-3′ (32, 33).

FcγRIIIa gene expression

FcγRIIIa gene expression was determined by quantitative real-time PCR. RNA (200 ng) extracted from PBMCs from 34 mCRC patients, carrying FcγRIIIa-158V/V (n = 12), V/F (n = 14), and F/F (n = 8), were reverse transcribed. The quantitative PCR reaction was conducted with 2 μL of cDNA in a 13.5 μL final volume mixture containing SYBR Green (Applied biosystems) and FcγRIIIa primers (sense, 5′-CCAAAAGCCACACTCAAAGAC-3′; antisense, 5′ACCCAGGTGGAAAGAA TGATG-3′). The quantity of FcγRIIIa mRNA in each sample was normalized to the relative quantity of Beta-glucuronidase (34).

ADCC assay

ADCC of LAK cells was evaluated by sulforhodamine B (SRB) assay (35). Target cells (HT29) were plated in a 96-well plate at 1 × 104 cells/well. Twenty-four hours later, human IL2-activated PBMCs (effectors) were added at a 10:1 effector:target (E:T) ratio in fresh medium, in the presence of cetuximab (10 μg/mL), or the rituximab (anti-CD20, 10 μg/mL), as negative control, or in the presence of staphylococcal enterotoxin B (SEB) as positive control. The specific cytolysis percentage was calculated using the following formula: Cytotoxicity (%) = [1 − (mean test optical density/mean optical density target)] × 100 (36, 37). Cetuximab-mediated ADCC is given by cytotoxicitywith cetuximab − cytotoxicitywithout cetuximab. All experiments were performed in triplicate, and results were expressed as mean values ± SE. For 15 mCRC patients, ADCC was also conducted with the conventional 24-hour lactate dehydrogenase release experiment (CytoTox 96-Non-Radioactive Cytotoxicity Assay; Promega).

NK cytotoxicity assay

Direct NK-cell cytotoxicity was measured in 39 mCRC patients using K562 as target cells. Briefly, carboxyfluorescein diacetate succinimidyl ester (CFSE)–labeled K562 cells were incubated with LAK cells at 5:1 E:T ratios. After 4 hours, target cells were identified by 7-aminoactinomycin D uptake. All experiments were performed in triplicate, and results were adjusted for the rate of cell death in the absence of effector cells and for the NK-cell frequency in thawed PBMCs (38). The lymphocyte populations CD3CD16+CD56+ (NK) were determined by anti-CD3 PerCP-Cy5, anti-CD56 PE-Cy7, and anti-CD16 PE. Data acquisition was performed with a BD FACSCanto II Flow Cytometer, and data were analyzed using BD FacsDiva 6.1.3 (BD Biosciences).

Statistical analysis

Statistical analyses were performed using the MedCalc 9.3.7.0 and Excel software. A χ2 test and one-way ANOVA were used. Progression-free survival (PFS) and overall survival (OS) were estimated using the Kaplan–Meier method. PFS and OS were defined as the interval between the beginning of treatment and clinical progression, death, or last follow-up if disease had not progressed. The comparison between SRB assay and CytoTox 96 was performed using the Bland-Altman plot (39). The distributions of the FcγRIIa and FcγRIIIa genotypes were tested for the Hardy–Weinberg equilibrium. Differences were considered to be statistically significant at P values below 0.05.

Study population features

Ninety-six consecutive mCRC patients referred to the Division of Abdominal Medical Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione “G. Pascale”-IRCCS-Napoli, were enrolled in the study (Table 1). The genotypic distributions and allelic frequencies of H131R for FcγRIIa and V158F for FcγRIIIa gene polymorphisms were analyzed in 96 patients and 148 control subjects (Table 2). Genotype frequencies were compatible with the Hardy–Weinberg equilibrium. FcγRIIa-H131R and FcγRIIIa-V158F were the most common genotypes. The H131R and V158F frequencies did not significantly differ between the control and study groups (P = 0.207 and P = 0.970, respectively). Although the H131 allele was more frequent in mCRC patients compared with healthy controls, the difference was not statistically significant (P = 0.193). FcγRIIIa polymorphism did not significantly differ between the controls and mCRC cases (P = 0.665).

Table 2.

Patient characteristics: genotypic distributions and allelic frequencies of FcγRIIa-H131R/FcγRIIIa-V158F

mCRCControls
N (%)N (%)P value
FcγRIIa-H131R 
H/H 39 (40%) 47 (32%)  
H/R 41 (43%) 74 (50%)  
R/R 16 (17%) 27 (18%) 0.207 
Allele 
H131 119 (62%) 168 (57%)  
R131 75 (38%) 128 (43%) 0.193 
FcγRIIIa-V158F 
V/V 26 (27%) 38 (26%)  
V/F 47 (49%) 74 (50%)  
F/F 23 (24%) 36 (24%) 0.970 
Allele 
V158 99 (51%) 150 (50%)  
F158 93 (49%) 146 (50%) 0.665 
mCRCControls
N (%)N (%)P value
FcγRIIa-H131R 
H/H 39 (40%) 47 (32%)  
H/R 41 (43%) 74 (50%)  
R/R 16 (17%) 27 (18%) 0.207 
Allele 
H131 119 (62%) 168 (57%)  
R131 75 (38%) 128 (43%) 0.193 
FcγRIIIa-V158F 
V/V 26 (27%) 38 (26%)  
V/F 47 (49%) 74 (50%)  
F/F 23 (24%) 36 (24%) 0.970 
Allele 
V158 99 (51%) 150 (50%)  
F158 93 (49%) 146 (50%) 0.665 

NOTE: P values are for the χ2 test comparing mCRC and control groups.

Abbreviations: F, phenylalanine allele; FcγR, fragment c-γ receptor; H, histidine allele; R, arginine allele; V, valine allele.

Cetuximab-ADCC correlates with FcγR polymorphisms

IL2-activated PBMC (LAK) cells isolated from 96 consecutive mCRC patients were evaluated in vitro for cetuximab-mediated ADCC induced against HT29, an EGFR-positive human colon cancer cell line. A representative assay is shown in Fig. 1A–E. A progressive increase in ADCC is shown in HT29 cells in the presence of LAKs derived from patients carrying H131R/F158F, H131R/V158F, and H131R/V158Vplus cetuximab (10 μg/mL; Fig. 1C). Patients carrying the V allele displayed higher ADCC activity.

Figure 1.

Representative cetuximab-mediated ADCC assay on HT29 human colon cancer cells. The ADCC tests were performed at a 10:1 E:T ratio in the presence of cetuximab (10 μg/mL); rituximab, an unrelated monoclonal antibody (10 μg/mL); and SEB (staphylococcus toxin B), an inducer of ADCC. A, HT29 human colon cancer cells alone. B–E, HT29 cells in the presence of LAK cells derived from 3 patients carrying different genotypes, cultured alone (B) or with (C) cetuximab, (D) rituximab, or (E) SEB. Photographs of the SRB assay were taken using an optical microscope at ×40 magnification.

Figure 1.

Representative cetuximab-mediated ADCC assay on HT29 human colon cancer cells. The ADCC tests were performed at a 10:1 E:T ratio in the presence of cetuximab (10 μg/mL); rituximab, an unrelated monoclonal antibody (10 μg/mL); and SEB (staphylococcus toxin B), an inducer of ADCC. A, HT29 human colon cancer cells alone. B–E, HT29 cells in the presence of LAK cells derived from 3 patients carrying different genotypes, cultured alone (B) or with (C) cetuximab, (D) rituximab, or (E) SEB. Photographs of the SRB assay were taken using an optical microscope at ×40 magnification.

Close modal

Cetuximab-mediated ADCC results from all 96 studied patients are shown in Fig. 2. Patients carrying the 131H allele of FcγRIIa (131H/H and 131H/R) displayed significantly greater average ADCC scores (percentage of cetuximab-mediated ADCC value) of 25% (0%–76%) and 17% (0%–55%), respectively, compared with patients carrying FcγRIIa 131R/R genotype, with 12% (0%–32%; P = 0.013; Fig. 2A). The FcγRIIIa 158V/V and 158V/F genotypes were associated with higher cetuximab-mediated ADCC compared with 158F/F, 27% (0%–76%) and 20% (0%–57%) versus 9% (0%–36%), respectively (P = 0.001; Fig. 2B). Expression of different amino acid 158 alleles of FcγRIIIa was examined by mRNA transcript in 34 mCRC patients, which showed FcγRIIIa-158 V/V in 12, V/F in 14, and F/F in 8 patients. Though the FcγRIIIa transcript level was higher in patients with FcγRIIIa-158 V/V or V/F, compared with F/F, analysis of variance showed no significant difference (P = 0.240; Fig. 2C). SRB-mediated ADCC was compared with a standard assay, CytoTox96, in 15 patients and the concordance quantified through Bland–Altman plot. The data are within the limits of agreement (Supplementary Fig. S1).

Figure 2.

Higher cetuximab-mediated ADCC in mCRC patients carrying H allele/FcγRII and V allele/FcγRIIIA. A, percentage of cetuximab-mediated ADCC by LAK cells relative to FcγRII. B, percentage of cetuximab-mediated ADCC by LAK cells relative to FcγRIII genotypes. C, FcγRIIIa mRNA expression.

Figure 2.

Higher cetuximab-mediated ADCC in mCRC patients carrying H allele/FcγRII and V allele/FcγRIIIA. A, percentage of cetuximab-mediated ADCC by LAK cells relative to FcγRII. B, percentage of cetuximab-mediated ADCC by LAK cells relative to FcγRIII genotypes. C, FcγRIIIa mRNA expression.

Close modal

FcγR polymorphisms and cetuximab-ADCC predict clinical response

Patients with mutant KRAS comprise almost 55% of the total population. Anti–EGFR-based therapies are indicated in patients with WT KRAS and comprise cetuximab or panitumumab. Thirty-two of 50 patients with WT KRAS were treated with anti–EGFR-based therapy. Twenty-eight patients were treated with cetuximab and four with panitumumab. In cetuximab-treated patients, the correlation between FcγR polymorphisms, in vitro cetuximab-mediated ADCC response, and their clinical response was evaluated. The characteristics of patients receiving cetuximab are shown in Table 3. 

Table 3.

Detailed characteristics of 28 KRAS-WT patients receiving cetuximab therapy

PatientGenderAge (years)Primary tumorSite of metastatic diseaseFcγRIIIa-V158FFcγRIIa-H131RCetuximab-mediated ADCC vs. HT29 cells (%)Anti-EGFR therapyResponse to anti-EGFR therapy
Female 63 Colon Liver VV HH 38.1 ± 6.3 FU+IRI+CET SD 
Male 64 Colon Liver + lung VF HR 9.3 ± 0.3 FU+IRI+CET PR 
Female 62 Colon Liver VF HH 23.0 ± 2.5 IRI+CET PD 
Male 68 Colon Liver FF HR 0.0 ± 0.5 IRI+CET PD 
Female 57 Colon Liver FF HR 4.0 ± 1.4 FU+IRI+CET PD 
Male 55 Colon Liver VF HR 34.3 ± 1.5 FU+IRI+CET PR 
Male 69 Colon Liver + lung FF HR 5.3 ± 1.9 IRI+CET SD 
Male 71 Colon Lung FF HH 4.2 ± 0.8 FU+IRI+CET PD 
Female 58 Colon Liver VF HH 10.0 ± 0.2 FU+IRI+CET SD 
10 Female 52 Colon Liver FF RR 0.0 ± 0.1 IRI+CET PD 
11 Female 66 Rectum Lung FF HH 36.0 ± 3.5 FU+IRI+CET SD 
12 Female 60 Colon Liver VV HH 41.2 ± 0.3 FU+IRI+CET PR 
13 Male 68 Rectum Liver VV RR 18.0 ± 3.7 IRI+CET PD 
14 Male 28 Rectum Liver VF HH 57.3 ± 1.3 FU+IRI+CET SD 
15 Male 62 Colon Liver+ lung VF HR 15.8 ± 0.1 IRI+CET SD 
16 Male 66 Colon Peritoneum VF RR 15.7 ± 0.9 IRI+CET PD 
17 Female 70 Rectum Peritoneum VF HH 7.3 ± 1.0 FU+IRI+CET PD 
18 Male 47 Colon Liver VF HR 13.1 ± 3.7 FU+IRI+CET PR 
19 Female 66 Colon Peritoneum VF RR 5.1 ± 1.0 FU+IRI+CET SD 
20 Female 70 Colon Lung VF HR 5.0 ± 1.7 IRI+CET SD 
21 Male 57 Rectum Lung VF RR 3.7 ± 1.4 FU+IRI+CET PD 
22 Male 69 Colon Liver VV HH 6.8 ± 1.8 IRI+CET SD 
23 Male 60 Rectum Lung VV HR 55.0 ± 0.1 IRI+CET PR 
24 Male 69 Colon Liver + lung VF HR 12.2 ± 0.8 IRI+CET CR 
25 Female 40 Rectum Liver VV RR 31.7 ± 1.0 CET SD 
26 Female 50 Rectum Liver VV HH 48.6 ± 0.9 CET PR 
27 Male 62 Colon Liver VV HH 32.7 ± 0.4 FU+OXA+CET PR 
28 Male 61 Colon Liver VF RR 25.0 ± 2.3 FU+OXA+CET SD 
PatientGenderAge (years)Primary tumorSite of metastatic diseaseFcγRIIIa-V158FFcγRIIa-H131RCetuximab-mediated ADCC vs. HT29 cells (%)Anti-EGFR therapyResponse to anti-EGFR therapy
Female 63 Colon Liver VV HH 38.1 ± 6.3 FU+IRI+CET SD 
Male 64 Colon Liver + lung VF HR 9.3 ± 0.3 FU+IRI+CET PR 
Female 62 Colon Liver VF HH 23.0 ± 2.5 IRI+CET PD 
Male 68 Colon Liver FF HR 0.0 ± 0.5 IRI+CET PD 
Female 57 Colon Liver FF HR 4.0 ± 1.4 FU+IRI+CET PD 
Male 55 Colon Liver VF HR 34.3 ± 1.5 FU+IRI+CET PR 
Male 69 Colon Liver + lung FF HR 5.3 ± 1.9 IRI+CET SD 
Male 71 Colon Lung FF HH 4.2 ± 0.8 FU+IRI+CET PD 
Female 58 Colon Liver VF HH 10.0 ± 0.2 FU+IRI+CET SD 
10 Female 52 Colon Liver FF RR 0.0 ± 0.1 IRI+CET PD 
11 Female 66 Rectum Lung FF HH 36.0 ± 3.5 FU+IRI+CET SD 
12 Female 60 Colon Liver VV HH 41.2 ± 0.3 FU+IRI+CET PR 
13 Male 68 Rectum Liver VV RR 18.0 ± 3.7 IRI+CET PD 
14 Male 28 Rectum Liver VF HH 57.3 ± 1.3 FU+IRI+CET SD 
15 Male 62 Colon Liver+ lung VF HR 15.8 ± 0.1 IRI+CET SD 
16 Male 66 Colon Peritoneum VF RR 15.7 ± 0.9 IRI+CET PD 
17 Female 70 Rectum Peritoneum VF HH 7.3 ± 1.0 FU+IRI+CET PD 
18 Male 47 Colon Liver VF HR 13.1 ± 3.7 FU+IRI+CET PR 
19 Female 66 Colon Peritoneum VF RR 5.1 ± 1.0 FU+IRI+CET SD 
20 Female 70 Colon Lung VF HR 5.0 ± 1.7 IRI+CET SD 
21 Male 57 Rectum Lung VF RR 3.7 ± 1.4 FU+IRI+CET PD 
22 Male 69 Colon Liver VV HH 6.8 ± 1.8 IRI+CET SD 
23 Male 60 Rectum Lung VV HR 55.0 ± 0.1 IRI+CET PR 
24 Male 69 Colon Liver + lung VF HR 12.2 ± 0.8 IRI+CET CR 
25 Female 40 Rectum Liver VV RR 31.7 ± 1.0 CET SD 
26 Female 50 Rectum Liver VV HH 48.6 ± 0.9 CET PR 
27 Male 62 Colon Liver VV HH 32.7 ± 0.4 FU+OXA+CET PR 
28 Male 61 Colon Liver VF RR 25.0 ± 2.3 FU+OXA+CET SD 

Abbreviations: BEV, bevacizumab; CAPE, capecitabine; CET, cetuximab; CR, complete response; FU, 5-fluorouracil; IRI, irinotecan; OXA, oxaliplatin; PD, progressive disease; PR, partial response; SD, stable disease.

The objective response was significantly different between patients carrying the FcγRIIa 131H allele (H/H and H/R genotypes) compared with those with the R/R genotype (P = 0.035) and between patients carrying the FcγRIIIa 158 V allele (V/V and V/F genotypes) compared with the F/F genotype (P = 0.025; Fig. 3A and B). The PFS of patients with FcγRIIIa 158V/V and V/F was significantly longer than that of patients with 158F/F (10.8 vs. 5.1 months respectively, P = 0.05, log-rank test; Supplementary Fig. S2), whereas OS was not affected. FcγRIIa alleles did not correlate with either PFS or OS (P = 0.55 for PFS; P = 0.15 for OS, log-rank test; data not shown). In Fig. 3C, the average value of in vitro cetuximab-mediated ADCC is shown: 30.6% (9%–55%) in patients with complete or partial responses, 21% (0%–57%) in patients with stable disease, and 8.3% (0%–23%) in patients with progressive disease, respectively (P = 0.020; ANOVA test). As previously reported (40), patients were classified as ADCC not inducible (<30% cetuximab-mediated cytotoxicity) and ADCC inducible (>30% cetuximab-mediated cytotoxicity). Although in vitro ADCC significantly correlated with cetuximab clinical response, no impact on prognosis was detected.

Figure 3.

Cetuximab clinical response correlates with FcγR polymorphisms and cetuximab-mediated ADCC activity. A and B, clinical response to cetuximab according to FcγR polymorphisms. C, clinical response to cetuximab according to in vitro cetuximab-mediated ADCC activity.

Figure 3.

Cetuximab clinical response correlates with FcγR polymorphisms and cetuximab-mediated ADCC activity. A and B, clinical response to cetuximab according to FcγR polymorphisms. C, clinical response to cetuximab according to in vitro cetuximab-mediated ADCC activity.

Close modal

NK-cell cytotoxicity and response to first-line therapy

To evaluate basal NK activity in mCRC patients, NK cytotoxicity was determined in 39 of the patients previously characterized for in vitro ADCC. First-line treatment of these patients was distributed as follows: 10 (25%) received chemotherapy alone, 24 (62%) received chemotherapy + anti-VEGF therapy, and 5 (13%) received chemotherapy + cetuximab-based therapy (Table 4). NK-cell cytotoxicity is shown in Fig. 4A. Specific killing is expressed as a function of percent lysis at a 5:1 ratio (ET), normalized for NK-cell frequency within PBMCs for each subject. Significant correlations were detected between NK-cell cytotoxicity and patient response to first-line therapy. Patients displaying complete or partial responses showed a higher percent cytotoxicity/percent NK-cell index compared with patients with stable or progressive disease (3.7, 1.3, and 0.26, respectively, P = 0.046; Fig. 4B). The patients with a percent cytotoxicity/percent NK-cell index > 0.6 (median value) were arbitrarily considered patients with high NK-cell cytotoxicity (against K562). A prognostic effect was detected on PFS but not on OS (11.23 vs. 7.11 months; P = 0.048; Fig. 4C).

Table 4.

Characteristics of 39 patients tested for NK-cell cytotoxicity

PatientGenderAge (years)Primary tumorSite of metastatic diseaseFirst-line therapyResponse to first-line therapy% Cytotoxicity/% NK cells
Male 54 Colon Liver FU+OXA SD 1.15 
Female 52 Colon Liver CAPE+OXA SD 1.02 
Female 72 Colon Liver FU+OXA+BEV PD 0.60 
Male 40 Colon Liver FU+OXA PD 0.00 
Male 28 Rectum Liver CAPE+OXA+BEV SD 0.53 
Female 40 Colon Liver FU+OXA+BEV PR 3.00 
Male 58 Colon Liver FU+OXA+BEV PR 3.57 
Female 61 Colon Liver + lung FU+OXA+BEV PD 0.26 
Female 64 Colon Liver CAPE+OXA+BEV SD 1.02 
10 Female 68 Colon Liver FU+OXA+BEV PR 15.59 
11 Male 57 Colon Liver + lung FU+OXA+BEV SD 0.13 
12 Male 64 Rectum Lung FU+OXA+BEV SD 0.79 
13 Male 40 Colon Lymph nodes FU+OXA+BEV PR 0.18 
14 Male 77 Rectum Liver CAPE+IRI PD 0.55 
15 Male 57 Rectum Lung FU+IRI+CET PD 0.15 
16 Female 55 Colon Liver FU+OXA+BEV PR 0.63 
17 Female 70 Rectum Peritoneum FU+IRI+CET PD 0.00 
18 Female 62 Colon Liver FU+OXA+BEV PR 0.41 
19 Male 53 Colon Liver FU+OXA+BEV PR 0.57 
20 Male 70 Colon Liver FU+OXA+BEV SD 4.40 
21 Male 69 Rectum Liver FU+IRI+BEV PR 7.37 
22 Female 63 Colon Liver CAPE+OXA CR 2.33 
23 Male 66 Colon Liver FU+OXA SD 0.00 
24 Female 48 Colon Liver FU+OXA PR 6.25 
25 Female 51 Rectum Liver CAPE+OXA PR 10.77 
26 Male 68 Colon Liver FU+OXA+BEV SD 10.47 
27 Male 47 Colon Liver FU+OXA+BEV PR 0.05 
28 Female 45 Colon Liver + lung FU+OXA+BEV SD 0.53 
29 Female 58 Colon Liver CAPE+OXA SD 0.93 
30 Female 66 Colon Peritoneum FU+IRI+CET SD 0.69 
31 Female 70 Colon Lung FU+IRI+BEV SD 0.15 
32 Male 57 Colon Liver FU+OXA+BEV CR 1.57 
33 Male 56 Colon Liver FU+OXA+BEV SD 0.61 
34 Male 71 Colon Lung FU+IRI+CET PR 0.38 
35 Male 57 Rectum Liver CAPE+OXA+BEV SD 0.38 
36 Male 69 Colon Lung FU+OXA+BEV SD 0.04 
37 Female 66 Rectum Lung FU+IRI+CET SD 0.37 
38 Male 70 Colon Liver CAPE+OXA SD 0.81 
39 Male 67 Colon Liver FU+OXA+BEV PD 0.22 
PatientGenderAge (years)Primary tumorSite of metastatic diseaseFirst-line therapyResponse to first-line therapy% Cytotoxicity/% NK cells
Male 54 Colon Liver FU+OXA SD 1.15 
Female 52 Colon Liver CAPE+OXA SD 1.02 
Female 72 Colon Liver FU+OXA+BEV PD 0.60 
Male 40 Colon Liver FU+OXA PD 0.00 
Male 28 Rectum Liver CAPE+OXA+BEV SD 0.53 
Female 40 Colon Liver FU+OXA+BEV PR 3.00 
Male 58 Colon Liver FU+OXA+BEV PR 3.57 
Female 61 Colon Liver + lung FU+OXA+BEV PD 0.26 
Female 64 Colon Liver CAPE+OXA+BEV SD 1.02 
10 Female 68 Colon Liver FU+OXA+BEV PR 15.59 
11 Male 57 Colon Liver + lung FU+OXA+BEV SD 0.13 
12 Male 64 Rectum Lung FU+OXA+BEV SD 0.79 
13 Male 40 Colon Lymph nodes FU+OXA+BEV PR 0.18 
14 Male 77 Rectum Liver CAPE+IRI PD 0.55 
15 Male 57 Rectum Lung FU+IRI+CET PD 0.15 
16 Female 55 Colon Liver FU+OXA+BEV PR 0.63 
17 Female 70 Rectum Peritoneum FU+IRI+CET PD 0.00 
18 Female 62 Colon Liver FU+OXA+BEV PR 0.41 
19 Male 53 Colon Liver FU+OXA+BEV PR 0.57 
20 Male 70 Colon Liver FU+OXA+BEV SD 4.40 
21 Male 69 Rectum Liver FU+IRI+BEV PR 7.37 
22 Female 63 Colon Liver CAPE+OXA CR 2.33 
23 Male 66 Colon Liver FU+OXA SD 0.00 
24 Female 48 Colon Liver FU+OXA PR 6.25 
25 Female 51 Rectum Liver CAPE+OXA PR 10.77 
26 Male 68 Colon Liver FU+OXA+BEV SD 10.47 
27 Male 47 Colon Liver FU+OXA+BEV PR 0.05 
28 Female 45 Colon Liver + lung FU+OXA+BEV SD 0.53 
29 Female 58 Colon Liver CAPE+OXA SD 0.93 
30 Female 66 Colon Peritoneum FU+IRI+CET SD 0.69 
31 Female 70 Colon Lung FU+IRI+BEV SD 0.15 
32 Male 57 Colon Liver FU+OXA+BEV CR 1.57 
33 Male 56 Colon Liver FU+OXA+BEV SD 0.61 
34 Male 71 Colon Lung FU+IRI+CET PR 0.38 
35 Male 57 Rectum Liver CAPE+OXA+BEV SD 0.38 
36 Male 69 Colon Lung FU+OXA+BEV SD 0.04 
37 Female 66 Rectum Lung FU+IRI+CET SD 0.37 
38 Male 70 Colon Liver CAPE+OXA SD 0.81 
39 Male 67 Colon Liver FU+OXA+BEV PD 0.22 

Abbreviations: BEV, bevacizumab; CAPE, capecitabine; CET, cetuximab; CR, complete response; FU, 5-fluorouracil; IRI, irinotecan; OXA, oxaliplatin; PD, progressive disease; PR, partial response; SD, stable disease.

Figure 4.

NK-cell cytotoxicity significantly correlated with response to first-line therapy. A, representative NK-cell cytotoxicity in mCRC patient, 7-AAD uptake by CFSE-K562 target cells in the presence of LAK cells. B, correlation between NK-cell cytotoxicity and response to first-line treatment. C, Kaplan–Meier for PFS. Patients with high NK-cell cytotoxicity (19 patients, 10 events) showed a longer PFS compared with patients with low NK-cell cytotoxicity (20 patients, 15 events); log-rank test for two curves: P = 0.048; HR, 0.46; CI, 0.19–0.99. 7-AAD, 7-aminoactinomycin D.

Figure 4.

NK-cell cytotoxicity significantly correlated with response to first-line therapy. A, representative NK-cell cytotoxicity in mCRC patient, 7-AAD uptake by CFSE-K562 target cells in the presence of LAK cells. B, correlation between NK-cell cytotoxicity and response to first-line treatment. C, Kaplan–Meier for PFS. Patients with high NK-cell cytotoxicity (19 patients, 10 events) showed a longer PFS compared with patients with low NK-cell cytotoxicity (20 patients, 15 events); log-rank test for two curves: P = 0.048; HR, 0.46; CI, 0.19–0.99. 7-AAD, 7-aminoactinomycin D.

Close modal

In this study, 96 patients newly diagnosed with mCRC were prospectively characterized for FcγR polymorphisms, and the relation to in vitro cetuximab-mediated ADCC was determined. Twenty-eight of 96 patients enrolled in the study underwent cetuximab-based therapy. A significant correlation was detected between in vitro cetuximab-mediated ADCC and cetuximab clinical responses, suggesting that high lytic efficiency and the absence of KRAS mutations magnify the clinical response to cetuximab. Moreover, NK basal cell cytotoxicity, evaluated in 39 patients, was correlated with first-line treatment responses. The survival of patients affected by mCRC has improved over the past decade, mainly due to the use of effective targeted therapies, such as anti-EGFR agents. Large randomized multicenter phase III clinical trials demonstrated the predictive value of KRAS for anti-EGFR therapy (41, 42). A meta-analysis of 11 studies showed that KRAS status was closely associated with the response rate (P < 0.001) and PFS (P = 0.005; ref. 43). KRAS mutation is a predictive marker for the efficacy of anti-EGFR agents in the treatment of mCRC as stated in guidelines from the National Comprehensive Cancer Network, European Society for Medical Oncology, and Japanese Society for Cancer of the Colon and Rectum, which recommend the use of antibodies to EGFR only for mCRC patients with WT KRAS. However, the prediction of response to first-line anti-EGFR therapy is a much more complex issue. De Roock and colleagues reported that patients with KRAS codon 13 mutants (G13D) treated with cetuximab showed significantly longer PFS and OS as compared with KRAS codon 12 mutants, and several other gene alterations aside from KRAS have been identified as candidate biomarkers for predicting the efficacy of anti-EGFR treatment (e.g., BRAF, PI3K, AKT, PTEN, MET, EGFR ligands; refs. 44, 45). Seo and colleagues (46) reported a significant correlation between EGFR expression and ADCC activity but not with the mutational status of KRAS and BRAF in colorectal cancer. The immune phenomena underlying these differences are as yet unknown (46). In addition, rare KRAS alterations and NRAS mutations have been recently included, defining the “RAS status” as the new validated marker of response to antibodies to EGFR (47, 48). Thus, subsets of cetuximab-refractory patients treated as KRAS WT could have harbored NRAS mutations.

To evaluate the basal NK status, NK cytotoxicity was evaluated in 39 patients (treated with different first-line therapies) and correlated to response to first-line therapy. Correale and colleagues found that a cytotoxic lymphocyte antitumor response was stimulated by dendritic cell (DC)–mediated cross-priming of antigens derived from cetuximab-covered cancer cells (49). The antitumor function can also be enhanced by NK-cell–DC cross-talk, which ensues after the recruitment of both NK cells and DCs to the inflamed areas caused by cancer, decreasing the activity and the number of immunosuppressive regulatory T cells. The resulting effective signaling can shape not only the innate immune response in inflamed peripheral tissues but also the adaptive immune response within secondary lymphoid organs (50). Our data strongly suggest that immune interactions between host and tumor are important in chemotherapy or chemobiotherapy-induced response beyond molecular alterations. In conclusion, with the limits relative to the number of patients evaluated, prospective evaluation of the in vitro cetuximab-mediated ADCC was correlated with the FcγR polymorphisms and may predict cetuximab responsiveness in primarily diagnosed mCRC patients. Also, NK-cell basal activity can contribute to the evaluation of first-line therapy response. Thus, the in vitro evaluation of basal and ADCC-induced NK activity may help predict the therapeutic responses of mCRC patients.

No potential conflicts of interest were disclosed.

Conception and design: A.M. Trotta, A. Ottaiano, C. Romano, G. Nasti, C. De Divitiis, R.V. Iaffaioli, S. Scala

Development of methodology: A.M. Trotta, C. De Divitiis, D. Califano

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): A.M. Trotta, A. Ottaiano, C. Romano, G. Nasti, A. Nappi, C. De Divitiis, M. Napolitano, S. Zanotta, R. Casaretti, A. Avallone, R.V. Iaffaioli

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): A.M. Trotta, A. Ottaiano, C. Romano, G. Nasti, S. Zanotta, C. D'Alterio, A. Avallone, S. Scala

Writing, review, and/or revision of the manuscript: A.M. Trotta, A. Ottaiano, C. Romano, G. Nasti, A. Nappi, C. De Divitiis, C. D'Alterio, A. Avallone, R.V. Iaffaioli, S. Scala

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): A.M. Trotta, C. Romano, G. Nasti, A. Nappi

Study supervision: C. Romano, G. Nasti, R.V. Iaffaioli, S. Scala

This study was supported by the IG AIRC n. 13192 (Principal Investigator, S. Scala) and Italian Ministry of Health “ Ricerca Corrente” M2/6 (Principal Investigator, S. Scala).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1.
Van Cutsem
E
,
Köhne
CH
,
Hitre
E
,
Zaluski
J
,
Chang Chien
CR
,
Makhson
A
, et al
Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer
.
N Engl J Med
2009
;
360
:
1408
17
.
2.
Cunningham
D
,
Humblet
Y
,
Siena
S
,
Khayat
D
,
Bleiberg
H
,
Santoro
A
, et al
Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer
.
N Engl J Med
2004
;
351
:
337
45
.
3.
Bokemeyer
C
,
Bondarenko
I
,
Makhson
A
,
Hartmann
JT
,
Aparicio
J
,
de Braud
F
, et al
Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer
.
J Clin Oncol
2009
;
27
:
663
71
.
4.
Karapetis
CS
,
Khambata-Ford
S
,
Jonker
DJ
,
O'Callaghan
CJ
,
Tu
D
,
Tebbutt
NC
, et al
K-ras mutations and benefit from cetuximab in advanced colorectal cancer
.
N Engl J Med
2008
;
359
:
1757
65
.
5.
Hildebrandt
B
,
le Coutre
P
,
Nicolaou
A
,
Köble
K
,
Riess
H
,
Dorken
B
. 
Cetuximab: appraisal of a novel drug against colorectal cancer. Recent Results
.
Cancer Res
2007
;
176
:
135
43
.
6.
Pander
J
,
Gelderblom
H
,
Antonini
NF
,
Tol
J
,
van Krieken
JH
,
van der Straaten
T
, et al
Correlation of FCGR3A and EGFR germline polymorphisms with the efficacy of cetuximab in KRAS wild-type metastatic colorectal cancer
.
Eur J Cancer
2010
;
46
:
1829
34
.
7.
Schnueriger
A
,
Grau
R
,
Sondermann
P
,
Schreitmueller
T
,
Marti
S
,
Zocher
M
. 
Development of a quantitative, cell-line based assay to measure ADCC activity mediated by therapeutic antibodies
.
Mol Immunol
2011
;
48
:
1512
7
.
8.
Taylor
RJ
,
Chan
SL
,
Wood
A
,
Voskens
CJ
,
Wolf
JS
,
Lin
W
, et al
Fcγ;RIIIa polymorphisms and cetuximab induced cytotoxicity in squamous cell carcinoma of the head and neck
.
Cancer Immunol Immunother
2009
;
58
:
997
1006
.
9.
Li
X
,
Ptacek
TS
,
Brown
EE
,
Edberg
JC
. 
Fcγ receptors: structure, function and role as genetic risk factors in SLE
.
Genes Immun
2009
;
10
:
380
9
.
10.
Nimmerjahn
F
,
Ravetch
JV
. 
Fcgamma receptors as regulators of immune responses
.
Nat Rev Immunol
2008
;
8
:
34
47
.
11.
Weiner
GJ
. 
Monoclonal antibody mechanisms of action in cancer
.
Immunol Res
2007
;
39
:
271
8
.
12.
Iannello
A
,
Ahmad
A
. 
Role of antibody-dependent cell-mediated cytotoxicity in the efficacy of therapeutic anti-cancer monoclonal antibodies
.
Cancer Metastatis Rev
2005
;
2
:
487
99
.
13.
Varchetta
S
,
Gibelli
N
,
Oliviero
B
,
Nardini
E
,
Gennari
R
,
Gatti
G
, et al
Elements related to heterogeneity of antibody-dependent cell cytotoxicity in patients under trastuzumab therapy for primary operable breast cancer overexpressing Her2
.
Cancer Res
2007
;
67
:
11991
9
.
14.
López-Albaitero
A
,
Lee
SC
,
Morgan
S
,
Grandis
JR
,
Gooding
WE
,
Ferrone
S
, et al
Role of polymorphic Fc gamma receptor IIIa and EGFR expression level in cetuximab mediated, NK cell dependent in vitro cytotoxicity of head and neck squamous cell carcinoma cells
.
Cancer Immunol Immunother
2009
;
58
:
1853
62
.
15.
Taylor
RJ
,
Chan
SL
,
Wood
A
,
Voskens
CJ
,
Wolf
JS
,
Lin
W
, et al
FcgammaRIIIa polymorphisms and cetuximab induced cytotoxicity in squamous cell carcinoma of the head and neck
.
Cancer Immunol Immunother
2009
;
58
:
997
1006
.
16.
Zhang
W
,
Gordon
M
,
Schultheis
AM
,
Yang
DY
,
Nagashima
F
,
Azuma
M
, et al
FcγR2A and FcγR3A polymorphisms associated with clinical outcome of epidermal growth factor receptor expressing metastatic colorectal cancer patients treated with single-agent cetuximab
.
J Clin Oncol
2007
;
25
:
3712
8
.
17.
Bibeau
F
,
Lopez-Crapez
E
,
Di Fiore
F
,
Thezenas
S
,
Ychou
M
,
Blanchard
F
, et al
Impact of Fc_RIIa-Fc_RIIIa polymorphisms and KRAS mutations on the clinical outcome of patients with metastatic colorectal cancer treated with cetuximab plus irinotecan
.
J Clin Oncol
2009
;
27
:
1122
9
.
18.
Rodríguez
J
,
Zarate
R
,
Bandres
E
,
Boni
V
,
Hernández
A
,
Sola
JJ
, et al
Fc gamma receptor polymorphisms as predictive markers of Cetuximab efficacy in epidermal growth factor receptor downstream-mutated metastatic colorectal cancer
.
Eur J Cancer
2012
;
48
:
1774
80
.
19.
Pander
J
,
Gelderblom
H
,
Antonini
NF
,
Tol
J
,
van Krieken
JH
,
van der Straaten
T
, et al
Correlation of FCGR3A and EGFR germline polymorphisms with the efficacy of cetuximab in KRAS wild-type metastatic colorectal cancer
.
Eur J Cancer
2010
;
46
:
1829
34
.
20.
Yang
X
,
Zhang
X
,
Mortenson
ED
,
Radkevich-Brown
O
,
Wang
Y
,
Fu
YX
. 
Cetuximab-mediated tumor regression depends on innate and adaptive immune responses
.
Mol Ther
2013
;
21
:
91
100
.
21.
Park
SJ
,
Hong
YS
,
Lee
JL
,
Ryu
MH
,
Chang
HM
,
Kim
KP
, et al
Genetic polymorphisms of FcγRIIa and FcγRIIIa are not predictive of clinical outcomes after cetuximab plus irinotecan chemotherapy in patients with metastatic colorectal cancer
.
Oncology
2012
;
82
:
83
9
.
22.
Paez
D
,
Paré
L
,
Espinosa
I
,
Salazar
J
,
del Rio
E
,
Barnadas
A
, et al
Immunoglobulin G fragment C receptor polymorphisms and KRAS mutations: are they useful biomarkers of clinical outcome in advanced colorectal cancer treated with anti-EGFR-based therapy?
Cancer Sci
2010
;
101
:
2048
53
.
23.
Negri
FV
,
Musolino
A
,
Naldi
N
,
Bortesi
B
,
Missale
G
,
Laccabue
D
, et al
Role of immunoglobulin G fragment C receptor polymorphism-mediated antibody-dependant cellular cytotoxicity in colorectal cancer treated with cetuximab therapy
.
Pharmacogenomics J
2014
;
14
:
14
9
.
24.
Calemma
R
,
Ottaiano
A
,
Trotta
AM
,
Nasti
G
,
Romano
C
,
Napolitano
M
, et al
Fc gamma receptor IIIa polymorphisms in advanced colorectal cancer patients correlated with response to anti-EGFR antibodies and clinical outcome
.
J Transl Med
2012
;
10
:
232
40
.
25.
Pernot
S
,
Terme
M
,
Voron
T
,
Colussi
O
,
Marcheteau
E
,
Tartour
E
, et al
Colorectal cancer and immunity: what we know and perspectives
.
World J Gastroenterol
2014
;
2014
:
3738
50
.
26.
Terme
M
,
Fridman
WH
,
Tartour
E
. 
NK cells from pleural effusions are potent antitumor effector cells
.
Eur J Immunol
2013
;
43
:
331
4
.
27.
Taketomi
A
,
Shimada
M
,
Shirabe
K
,
Kajiyama
K
,
Gian
T
,
Sugimachi
K
. 
Natural killer cell activity in patients with hepatocellular-carcinoma: a new prognostic indicator after hepatectomy
.
Cancer
1998
;
83
:
58
63
.
28.
Liljefors
M
,
Nilsson
B
,
Hjelm Skog
AL
,
Ragnhammar
P
,
Mellstedt
H
,
Frödin
JE
. 
Natural killer (NK) cell function is a strong prognostic factor in colorectal carcinoma patients treated with the monoclonal antibody 17-1A
.
Int J Cancer
2003
;
105
:
717
23
.
29.
Coca
S
,
Perez-Piqueras
J
,
Martinez
D
,
Colmenarejo
A
,
Saez
MA
,
Vallejo
C
, et al
The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma
.
Cancer
1997
;
79
:
2320
8
.
30.
Norris
CF
,
Pricop
L
,
Millard
SS
,
Taylor
SM
,
Surrey
S
,
Schwartz
E
, et al
Naturally occurring mutation in FcγRIIA: a Q to K127 change confers unique IgG binding properties to the R131 allelic form of the receptor
.
Blood
1998
;
91
:
656
62
.
31.
Carlotti
E
,
Palumbo
GA
,
Oldani
E
,
Tibullo
D
,
Salmoiraghi
S
,
Rossi
A
, et al
FcgammaRIIIA and FcgammaRIIA polymorphisms do not predict clinical outcome of follicular non-Hodgkin's lymphoma patients treated with sequential CHOP and rituximab
.
Haematologica
2007
;
92
:
1127
30
.
32.
Leppers-van de Straat
FG
,
van der Pol
WL
,
Jansen
MD
,
Sugita
N
,
Yoshie
H
,
Kobayashi
T
, et al
A novel PCR-based method for direct Fcγ-receptor IIIa (CD16) allotyping
.
J Immunol Methods
2000
;
242
:
127
32
.
33.
Wu
J
,
Edberg
JC
,
Redecha
PB
,
Bansal
V
,
Guyre
PM
,
Coleman
K
, et al
A novel polymorphism of FcγRIIIa (CD16) alters receptor function and predisposes to autoimmune disease
.
J Clin Invest
1997
;
100
:
1059
70
.
34.
Hatjiharissi
E
,
Xu
L
,
Santos
DD
,
Hunter
ZR
,
Ciccarelli
BT
,
Verselis
S
, et al
Increased natural killer cell expression of CD16, augmented binding andADCC activity to rituximab among individuals expressing the FcγRIIIa-158 V/V and V/F polymorphism
.
Blood
2007
;
110
:
2561
4
.
35.
Papazisis
KT
,
Geromichalos
GD
,
Dimitriadis
KA
,
Kortsaris
AH
. 
Optimization of the sulforhodamine B colorimetric assay
.
J Immunol Methods
1997
;
208
:
151
8
.
36.
Skehan
P
,
Storeng
R
,
Scudiero
D
,
Monks
A
,
McMahon
J
,
Vistica
D
, et al
New colorimetric cytotoxicity assay for anticancer-drug screening
.
J Natl Cancer
1990
;
82
:
1107
12
.
37.
Skehan
P
. 
Assays of cell growth and cytotoxicity
. In:
Studzinski
GP
editor.
Cell growth and apoptosis: a practical approach.
New York
:
Oxford University Press
; 
1995
. p.
169
.
38.
Oppenheim
DE
,
Spreafico
R
,
Etuk
A
,
Malone
D
,
Amofah
E
,
Peña-Murillo
C
, et al
Glyco-engineered anti-EGFR mAb elicits ADCC by NK cells from colorectal cancer patients irrespective of chemotherapy
.
Br J Cancer
2014
;
110
:
1221
7
39.
Bland
JM
,
Altman
DG
: 
Statistical-methods for assessing agreement between 2 methods of clinical measurement
.
Lancet
1986
;
1
:
307
10
.
40.
Taylor
RJ
,
Saloura
V
,
Jain
A
,
Goloubeva
O
,
Wong
S
,
Kronsberg
S
, et al
Ex vivo antibody-dependent cellular cytotoxicity inducibility predicts efficacy of cetuximab
.
Cancer Immunol Res
2015
;
3
:
567
74
.
41.
Peeters
M
,
Douillard
JY
,
Van Cutsem
E
,
Siena
S
,
Zhang
K
,
Williams
R
, et al
Mutant KRAS codon 12 and 13 alleles in patients with metastatic colorectal cancer: assessment as prognostic and predictive biomarkers of response to panitumumab
.
J Clin Oncol
2013
;
31
:
759
65
.
42.
Heinemann
V
,
von Weikersthal
LF
,
Decker
T
,
Kiani
A
,
Vehling-Kaiser
U
,
Al-Batran
SE
, et al
FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial
.
Lancet Oncol
2014
;
15
:
1065
75
.
43.
Adelstein
BA
,
Dobbins
TA
,
Harris
CA
,
Marschner
IC
,
Ward
RL
. 
A systematic review and meta-analysis of KRAS status as the determinant of response to anti-EGFR antibodies and the impact of partner chemotherapy in metastatic colorectal cancer
.
Eur J Cancer
2011
;
47
:
1343
54
.
44.
De Roock
W
,
Jonker
DJ
,
Di Nicolantonio
F
,
Sartore-Bianchi
A
,
Tu
D
,
Siena
S
, et al
Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab
.
JAMA
2010
;
304
:
1812
20
.
45.
De Roock
W
,
Claes
B
,
Bernasconi
D
,
De Schutter
J
,
Biesmans
B
,
Fountzilas
G
, et al
Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis
.
Lancet Oncol
2010
;
11
:
753
62
46.
Seo
Y
,
Ishii
Y
,
Ochiai
H
,
Fukuda
K
,
Akimoto
S
,
Hayashida
T
, et al
Cetuximab-mediated ADCC activity is correlated with the cell surface expression level of EGFR but not with the KRAS/BRAF mutational status in colorectal cancer
.
Oncol Rep
2014
;
31
:
2115
22
.
47.
Douillard
JY
,
Siena
S
,
Cassidy
J
,
Tabernero
J
,
Burkes
R
,
Barugel
M
, et al
Final results from PRIME: randomized phase III study of panitumumab with FOLFOX4 for first-line treatment of metastatic colorectal cancer
.
Ann Oncol
2014
;
25
:
1346
55
.
48.
Stintzing
S
,
Stremitzer
S
,
Sebio
A
,
Lenz
HJ
. 
Predictive and prognostic markers in the treatment of metastatic colorectal cancer (mCRC): personalized medicine at work
.
Hematol Oncol Clin North Am
2015
;
29
:
43
60
.
49.
Correale
P
,
Botta
C
,
Cusi
M
,
Del Vecchio
MT
,
De Santi
MM
,
Gori Savellini
G
, et al
Cetuximab +/− chemotherapy enhances dendritic cell-mediated phagocytosis of colon cancer cells and ignites a highly efficient colon cancer antigen-specific cytotoxic T-cell response in vitro
.
Int J Cancer
2012
;
130
:
1577
89
.
50.
Zhuang
H
,
Xue
ZY
,
Wang
L
,
Li
XY
,
Zhang
N
,
Zhang
RX
. 
Efficacy and immune mechanisms of cetuximab for the treatment of metastatic colorectal cancer
.
Clin Oncol Cancer Res
2011
;
8
:
207
14
.