Immune checkpoint blockade (ICB) has revolutionized cancer treatment; however, the mechanisms determining patient response remain poorly understood. Here, we used machine learning to predict ICB response from germline and somatic biomarkers and interpreted the learned model to uncover putative mechanisms driving superior outcomes. Patients with higher infiltration of T-follicular helper cells had responses even in the presence of defects in the MHC class-I (MHC-I). Further investigation uncovered different ICB responses in tumors when responses were reliant on MHC-I versus MHC-II neoantigens. Despite similar response rates, MHC II–reliant responses were associated with significantly longer durable clinical benefits (discovery: median overall survival of 63.6 vs. 34.5 months; P = 0.0074; validation: median overall survival of 37.5 vs. 33.1 months; P = 0.040). Characteristics of the tumor immune microenvironment reflected MHC neoantigen reliance, and analysis of immune checkpoints revealed LAG3 as a potential target in MHC II–reliant but not MHC I–reliant responses. This study highlights the value of interpretable machine learning models in elucidating the biological basis of therapy responses.

This content is only available via PDF.
This open access article is distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.

Supplementary data