The lack of tools for early detection of pancreatic ductal adenocarcinoma (PDAC) is directly correlated to the abysmal survival rate in patients. In addition to several potential detection tools under active investigation, we present the gut microbiome and its metabolic complement as one of the earliest detection tools that could be useful in patients at high risk for PDAC. A combination of 16s pyrosequencing and whole-genome sequencing of gut microbiota in a spontaneous genetically engineered PDAC murine model (KRASG12DTP53R172HPdxCre or KPC) showed a progressive Proteobacterial and Firmicutes dominance in gut microbiota in early stages of PDAC development. Upon in silico reconstruction of active metabolic pathways within the altered microbial flora, polyamine and nucleotide biosynthetic pathways were found to be significantly elevated. These metabolic products are known to be actively assimilated by the host and eventually utilized by rapidly dividing cells for proliferation, validating their importance in the context of tumorigenesis. In KPC mice, as well as PDAC patients, we show significantly elevated serum polyamine concentration. Therefore, at the early stages of tumorigenesis, the gut microbial composition changes in a way to promote inflammation and release metabolites that foster host tumorigenesis, thereby fulfilling the “vicious cycle hypothesis” of the role of the microbiome in health and disease states. Our results provide a potential, precise, noninvasive tool for early detection of PDAC, which will result in improved outcomes.

Citation Format: Roberto Mendez, Kousik Kesh, Nivedita Arora, Leá Di Martino, Florencia McAllister, Nipun Merchant, Sulagna Banerjee, Santanu Banerjee. Microbial polyamines and early detection of pancreatic cancer [abstract]. In: Proceedings of the AACR Special Conference on Tumor Immunology and Immunotherapy; 2018 Nov 27-30; Miami Beach, FL. Philadelphia (PA): AACR; Cancer Immunol Res 2020;8(4 Suppl):Abstract nr A67.