Immunotherapy has limited efficacy in glioblastoma (GBM) due to the blood–brain barrier and the immunosuppressed or “cold” tumor microenvironment (TME) of GBM, which is dominated by immune-inhibitory cells and depleted of CTL and dendritic cells (DC). Here, we report the development and application of a machine learning precision method to identify cell fate determinants (CFD) that specifically reprogram GBM cells into induced antigen-presenting cells with DC-like functions (iDC-APC). In murine GBM models, iDC-APCs acquired DC-like morphology, regulatory gene expression profile, and functions comparable to natural DCs. Among these acquired functions were phagocytosis, direct presentation of endogenous antigens, and cross-presentation of exogenous antigens. The latter endowed the iDC-APCs with the ability to prime naïve CD8+ CTLs, a hallmark DC function critical for antitumor immunity. Intratumor iDC-APCs reduced tumor growth and improved survival only in immunocompetent animals, which coincided with extensive infiltration of CD4+ T cells and activated CD8+ CTLs in the TME. The reactivated TME synergized with an intratumor soluble PD1 decoy immunotherapy and a DC-based GBM vaccine, resulting in robust killing of highly resistant GBM cells by tumor-specific CD8+ CTLs and significantly extended survival. Lastly, we defined a unique CFD combination specifically for the human GBM to iDC-APC conversion of both glioma stem-like cells and non–stem-like cell GBM cells, confirming the clinical utility of a computationally directed, tumor-specific conversion immunotherapy for GBM and potentially other solid tumors.

You do not currently have access to this content.