The role of ubiquitin-mediated degradation mechanisms in the pathogenesis of diffuse large B-cell lymphoma (BCL) and follicular lymphoma is not completely understood. We show that conditional deletion of the E3 ubiquitin ligase Fbxo45 in germinal center B cells results in B-cell lymphomagenesis in homozygous (100%) and heterozygous (48%) mice. Mechanistically, FBXO45 targets the RHO guanine exchange factor ARHGEF2/GEF-H1 for ubiquitin-mediated degradation. Double genetic ablation of Fbxo45 and Arhgef2 ameliorated lymphoma formation. Transgenic knock-in mice harboring a GEF-H1 mutant unable to bind FBXO45 develop BCLs with ∼50% penetrance. Genome sequencing in human lymphomas identified mutually exclusive FBXO45 copy-number losses and ARHGEF2 gains, with combined frequencies ranging from 26.32% in follicular lymphoma to 45.12% in diffuse large BCL. Notably, FBXO45 silencing enhances sensitivity to MEK1/2 inhibition. These results identify FBXO45 and ARHGEF2 as a novel tumor suppressor and oncogene pair involved in the pathogenesis of BCLs with important implications for targeted therapies.

Significance:

We describe the identification of a previously unrecognized ubiquitin ligase–substrate (FBXO45–GEF-H1) regulatory axis that plays an important role in germinal center formation and pathogenesis of common BCLs. These studies reveal novel insights linking dysregulated ubiquitin-mediated control to exploitable vulnerabilities and novel therapeutic strategies for these cancers.

This content is only available via PDF.
This open access article is distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.

Article PDF first page preview

Article PDF first page preview

Supplementary data