Pancreatic ductal adenocarcinoma (PDAC) resists conventional chemo/radiation and immunotherapy. In PDAC, oncogenic KRAS (KRAS*) drives glycolysis in cancer cells to consume available glucose and produce abundant lactate, creating profound immune suppression in the tumor microenvironment. Here, we combined KRAS* inhibition with agents targeting the major arms of the immunity cycle: CXCR1/2 inhibitor for myeloid cells, antagonistic anti-LAG3 antibody for T cells, and agonistic anti-41BB antibody for dendritic cells. This combination elicited robust anti-tumor regression in iKPC mice bearing large autochthonous tumors. While untreated mice succumbed within 3 weeks, sustained treatment led to durable complete tumor regression and prolonged survival in 36% of mice at 6 months. Mechanistic analyses revealed enhanced T cell infiltration and activation, depletion of immunosuppressive myeloid cells, and increased antigen cross-presentation by dendritic cells within the tumor core. These findings highlight the promise of KRAS* inhibitors alongside immunotherapy as a potential PDAC treatment avenue, warranting clinical investigation.

This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.