Reference atlases, molecular and spatial maps of mammalian tissues, are critical resources for discovery efforts and translational research. Their utility is dependent on operationalizing the resulting data by identifying cell types, histological patterns, and predictive biomarkers underlying health and disease. The human lymph node (LN) offers a compelling use case because of its importance in immunity, structural and cellular diversity, and neoplastic involvement. One hematological malignancy, follicular lymphoma (FL), evolves from developmentally blocked germinal center B cells residing in and trafficking through these tissues. To promote survival and immune escape, tumor B cells undergo significant genetic changes and extensively remodel the lymphoid microenvironment. Here, we present an integrated portrait of healthy and FL LNs using multiple genomic and advanced imaging technologies. By leveraging the strengths of each platform, we identified several tumor-specific features and microenvironmental patterns enriched in individuals who experience early relapse, the most high-risk of FL patients.

Citation Format: Andrea J. Radtke. A multi-scale, multiomic atlas of human and follicular lymphoma lymph nodes [abstract]. In: Proceedings of the Third AACR International Meeting: Advances in Malignant Lymphoma: Maximizing the Basic-Translational Interface for Clinical Application; 2022 Jun 23-26; Boston, MA. Philadelphia (PA): AACR; Blood Cancer Discov 2022;3(5_Suppl):Abstract nr IA31.