Abstract
Ionizing radiotherapy (RT) is a widely used treatment strategy for malignancies. In solid tumors, RT-induced double-strand breaks lead to the accumulation of indels, and their repair by non-homologous end-joining has been linked to the ID8 mutational signature in surviving cells. However, the extent of RT-induced mutagenesis in hematologic malignancies and its impact on their mutational profiles and interplay with commonly used chemotherapies has not yet been explored. Here, we interrogated 580 whole-genome sequence samples (WGS) from patients with large B-cell lymphoma, multiple myeloma, and myeloid neoplasms and identified ID8 only in relapsed disease. Yet, ID8 was detected after exposure to both RT and mutagenic chemotherapy (i.e., platinum and melphalan). Using WGS of single-cell colonies derived from treated lymphoma cells, we revealed a dose-response relationship between RT and platinum and ID8. Finally, using ID8 as a genomic barcode we demonstrate that a single RT-surviving cell may seed distant relapse.